scispace - formally typeset
Search or ask a question
Author

Luc Van Gool

Other affiliations: Microsoft, ETH Zurich, Politehnica University of Timișoara  ...read more
Bio: Luc Van Gool is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Computer science & Object detection. The author has an hindex of 133, co-authored 1307 publications receiving 107743 citations. Previous affiliations of Luc Van Gool include Microsoft & ETH Zurich.


Papers
More filters
Book ChapterDOI
02 Dec 2018
TL;DR: A hierarchical correlation clustering (HCC) framework is introduced, in which it is shown that a few high-quality training examples can be used to fine-tune pre-trained CNNs, thereby teaching them to recognize the uniqueness of people’s appearance in the test sequence.
Abstract: This work addresses the task of multi-person tracking in crowded street scenes, where long-term occlusions pose a major challenge. One popular way to address this challenge is to re-identify people before and after occlusions using Convolutional Neural Networks (CNNs). To achieve good performance, CNNs require a large amount of training data, which is not available for multi-person tracking scenarios. Instead of annotating large training sequences, we introduce a customized multi-person tracker that automatically adapts its person re-identification CNNs to capture the discriminative appearance patterns in a test sequence. We show that a few high-quality training examples that are automatically mined from the test sequence can be used to fine-tune pre-trained CNNs, thereby teaching them to recognize the uniqueness of people’s appearance in the test sequence. To that end, we introduce a hierarchical correlation clustering (HCC) framework, in which we utilize an existing robust correlation clustering tracking model, but with different graph structures to generate local, reliable tracklets as well as globally associated tracks. We deploy intuitive physical constraints on the local tracklets to generate the high-quality training examples for customizing the person re-identification CNNs. Our customized multi-person tracker achieves state-of-the-art performance on the challenging MOT16 tracking benchmark.

52 citations

Journal Article
TL;DR: In this article, the authors proposed to use discriminatively learned salient points on the fingers and estimate the finger-salient point associations simultaneously with the estimation of the hand pose.
Abstract: Capturing the motion of two hands interacting with an object is a very challenging task due to the large number of degrees of freedom, self-occlusions, and similarity between the fingers, even in the case of multiple cameras observing the scene. In this paper we propose to use discriminatively learned salient points on the fingers and to estimate the finger-salient point associations simultaneously with the estimation of the hand pose. We introduce a differentiable objective function that also takes edges, optical flow and collisions into account. Our qualitative and quantitative evaluations show that the proposed approach achieves very accurate results for several challenging sequences containing hands and objects in action.

52 citations

Posted Content
11 Feb 2017
TL;DR: The proposed discriminator network architecture is highly efficient and runs at 90 FPS on the CPU with accuracies comparable or better than state-of-art on 3 publicly available benchmarks.
Abstract: State-of-the-art methods for 3D hand pose estimation from depth images require large amounts of annotated training data. We propose to model the statistical relationships of 3D hand poses and corresponding depth images using two deep generative models with a shared latent space. By design, our architecture allows for learning from unlabeled image data in a semi-supervised manner. Assuming a one-to-one mapping between a pose and a depth map, any given point in the shared latent space can be projected into both a hand pose and a corresponding depth map. Regressing the hand pose can then be done by learning a discriminator to estimate the posterior of the latent pose given some depth map. To improve generalization and to better exploit unlabeled depth maps, we jointly train a generator and a discriminator. At each iteration, the generator is updated with the back-propagated gradient from the discriminator to synthesize realistic depth maps of the articulated hand, while the discriminator benefits from an augmented training set of synthesized and unlabeled samples. The proposed discriminator network architecture is highly efficient and runs at 90 FPS on the CPU with accuracies comparable or better than state-of-art on 3 publicly available benchmarks.

51 citations

Journal ArticleDOI
TL;DR: This paper presents an integrated solution for the problem of detecting, tracking and identifying vehicles in a tunnel surveillance application, taking into account practical constraints including real-time operation, poor imaging conditions, and a decentralized architecture.

51 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: This paper presents a unified CNN architecture that uses a range of enhancement filters that can enhance image-specific details via end-to-end dynamic filter learning and is capable of improving the performance of all generic CNN architectures.
Abstract: Convolutional neural networks rely on image texture and structure to serve as discriminative features to classify the image content. Image enhancement techniques can be used as preprocessing steps to help improve the overall image quality and in turn improve the overall effectiveness of a CNN. Existing image enhancement methods, however, are designed to improve the perceptual quality of an image for a human observer. In this paper, we are interested in learning CNNs that can emulate image enhancement and restoration, but with the overall goal to improve image classification and not necessarily human perception. To this end, we present a unified CNN architecture that uses a range of enhancement filters that can enhance image-specific details via end-to-end dynamic filter learning. We demonstrate the effectiveness of this strategy on four challenging benchmark datasets for fine-grained, object, scene, and texture classification: CUB-200-2011, PASCAL-VOC2007, MIT-Indoor, and DTD. Experiments using our proposed enhancement show promising results on all the datasets. In addition, our approach is capable of improving the performance of all generic CNN architectures.

51 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations