scispace - formally typeset
Search or ask a question
Author

Luca P. Carloni

Bio: Luca P. Carloni is an academic researcher from Columbia University. The author has contributed to research in topics: Network on a chip & System on a chip. The author has an hindex of 43, co-authored 200 publications receiving 7120 citations. Previous affiliations of Luca P. Carloni include University of California, Berkeley & Cadence Design Systems.


Papers
More filters
Journal ArticleDOI
TL;DR: Results confirm the unique benefits for future generations of CMPs that can be achieved by bringing optics into the chip in the form of photonic NoCs, as well as a comparative power analysis of a photonic versus an electronic NoC.
Abstract: The design and performance of next-generation chip multiprocessors (CMPs) will be bound by the limited amount of power that can be dissipated on a single die We present photonic networks-on-chip (NoC) as a solution to reduce the impact of intra-chip and off-chip communication on the overall power budget A photonic interconnection network can deliver higher bandwidth and lower latencies with significantly lower power dissipation We explain why on-chip photonic communication has recently become a feasible opportunity and explore the challenges that need to be addressed to realize its implementation We introduce a novel hybrid micro-architecture for NoCs combining a broadband photonic circuit-switched network with an electronic overlay packet-switched control network We address the critical design issues including: topology, routing algorithms, deadlock avoidance, and path-setup/tear-down procedures We present experimental results obtained with POINTS, an event-driven simulator specifically developed to analyze the proposed idea, as well as a comparative power analysis of a photonic versus an electronic NoC Overall, these results confirm the unique benefits for future generations of CMPs that can be achieved by bringing optics into the chip in the form of photonic NoCs

873 citations

Journal ArticleDOI
TL;DR: The theory of latency-insensitive design is presented as the foundation of a new correct-by-construction methodology to design complex systems by assembling intellectual property components to design large digital integrated circuits by using deep submicrometer technologies.
Abstract: The theory of latency-insensitive design is presented as the foundation of a new correct-by-construction methodology to design complex systems by assembling intellectual property components. Latency-insensitive designs are synchronous distributed systems and are realized by composing functional modules that exchange data on communication channels according to an appropriate protocol. The protocol works on the assumption that the modules are stallable, a weak condition to ask them to obey. The goal of the protocol is to guarantee that latency-insensitive designs composed of functionally correct modules behave correctly independently of the channel latencies. This allows us to increase the robustness of a design implementation because any delay variations of a channel can be "recovered" by changing the channel latency while the overall system functionality remains unaffected. As a consequence, an important application of the proposed theory is represented by the latency-insensitive methodology to design large digital integrated circuits by using deep submicrometer technologies.

435 citations

Patent
07 Jan 2002
TL;DR: In this paper, a method and system for converting plain text into structured data is presented, which can be used both for populating a database and/or for retrieving data from a database based on a query.
Abstract: A method and system for converting plain text into structured data. Parse trees for the plain text are generated based on the grammar of a natural language, the parse trees are mapped on to instance trees generated based on an application-specific model. The best map is chosen, and the instance tree is passing to an application for execution. The method and system can be used both for populating a database and/or for retrieving data from a database based on a query.

366 citations

Proceedings ArticleDOI
07 May 2007
TL;DR: Simulations show that this class of photonic networks-on-chip offers a significant leap in the performance for CMP intrachip communication systems delivering low-latencies and ultra-high throughputs per core while consuming minimal power.
Abstract: Recent remarkable advances in nanoscale silicon-photonic integrated circuitry specifically compatible with CMOS fabrication have generated new opportunities for leveraging the unique capabilities of optical technologies in the on-chip communications infrastructure. Based on these nano-photonic building blocks, we consider a photonic network-on-chip architecture designed to exploit the enormous transmission bandwidths, low latencies, and low power dissipation enabled by data exchange in the optical domain. The novel architectural approach employs a broadband photonic circuit-switched network driven in a distributed fashion by an electronic overlay control network which is also used for independent exchange of short messages. We address the critical network design issues for insertion in chip multiprocessors (CMP) applications, including topology, routing algorithms, path-setup and tear-down procedures, and deadlock avoidance. Simulations show that this class of photonic networks-on-chip offers a significant leap in the performance for CMP intrachip communication systems delivering low-latencies and ultra-high throughputs per core while consuming minimal power

324 citations

Proceedings ArticleDOI
07 Nov 1999
TL;DR: A new synthesis methodology for synchronous systems that makes the design functionally insensitive to the latency of long wires is proposed as well as a report on the latency insensitive design of PDLX, an out-of-order microprocessor with speculative-execution.
Abstract: In Deep Sub-Micron (DSM) designs, performance will depend critically on the latency of long wires. We propose a new synthesis methodology for synchronous systems that makes the design functionally insensitive to the latency of long wires. Given a synchronous specification of a design, we generate a functionaly equivalent synchronous implementation that can tolerate arbitrary communication latency between latches. By using latches we can break a long wire in short segments which can be traversed while meeting a single clock cycle constraint. The overall goal is to obtain a design that is robust with respect to delays of long wires, in a shorter time by reducing the multiple iterations between logical and physical design, and with performance that is optimized with respect to the speed of the single components of the design. In this paper we describe the details of the proposed methodology as well as report on the latency insensitive design of PDLX, an out-of-order microprocessor with speculative-execution.

192 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
10 Jun 2009
TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Abstract: We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a ~ 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.

1,959 citations

01 Jan 2009
TL;DR: This paper presents a meta-modelling framework for modeling and testing the robustness of the modeled systems and some of the techniques used in this framework have been developed and tested in the field.
Abstract: ing WS1S Systems to Verify Parameterized Networks . . . . . . . . . . . . 188 Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl FMona: A Tool for Expressing Validation Techniques over Infinite State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 J.-P. Bodeveix and M. Filali Transitive Closures of Regular Relations for Verifying Infinite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Bengt Jonsson and Marcus Nilsson Diagnostic and Test Generation Using Static Analysis to Improve Automatic Test Generation . . . . . . . . . . . . . 235 Marius Bozga, Jean-Claude Fernandez and Lucian Ghirvu Efficient Diagnostic Generation for Boolean Equation Systems . . . . . . . . . . . . 251 Radu Mateescu Efficient Model-Checking Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Jean-Pierre Krimm and Laurent Mounier Checking for CFFD-Preorder with Tester Processes . . . . . . . . . . . . . . . . . . . . . . . 283 Juhana Helovuo and Antti Valmari Fair Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Thomas A. Henzinger and Sriram K. Rajamani Integrating Low Level Symmetries into Reachability Analysis . . . . . . . . . . . . . 315 Karsten Schmidt Model-Checking Tools Model Checking Support for the ASM High-Level Language . . . . . . . . . . . . . . 331 Giuseppe Del Castillo and Kirsten Winter Table of

1,687 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: This demonstration could represent the beginning of an era of chip-scale electronic–photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.
Abstract: An electronic–photonic microprocessor chip manufactured using a conventional microelectronics foundry process is demonstrated; the chip contains 70 million transistors and 850 photonic components and directly uses light to communicate to other chips. The rapid transfer of data between chips in computer systems and data centres has become one of the bottlenecks in modern information processing. One way of increasing speeds is to use optical connections rather than electrical wires and the past decade has seen significant efforts to develop silicon-based nanophotonic approaches to integrate such links within silicon chips, but incompatibility between the manufacturing processes used in electronics and photonics has proved a hindrance. Now Chen Sun et al. describe a 'system on a chip' microprocessor that successfully integrates electronics and photonics yet is produced using standard microelectronic chip fabrication techniques. The resulting microprocessor combines 70 million transistors and 850 photonic components and can communicate optically with the outside world. This result promises a way forward for new fast, low-power computing systems architectures. Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome1,2,3 by using optical communications based on chip-scale electronic–photonic systems4,5,6,7 enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic–photonic chips9,10,11 are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic–photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics12, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors13,14,15,16. This demonstration could represent the beginning of an era of chip-scale electronic–photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.

1,058 citations