scispace - formally typeset
Search or ask a question
Author

Luca Sterpone

Other affiliations: Instituto Politécnico Nacional
Bio: Luca Sterpone is an academic researcher from Polytechnic University of Turin. The author has contributed to research in topics: Fault injection & Field-programmable gate array. The author has an hindex of 24, co-authored 222 publications receiving 3125 citations. Previous affiliations of Luca Sterpone include Instituto Politécnico Nacional.


Papers
More filters
Proceedings ArticleDOI
01 May 2007
TL;DR: A novel hardware acceleration architecture specifically designed to process and measure DNA microarray images is presented and shows a reduction of the computation time of one order of magnitude if compared with previously developed software-based approach.
Abstract: A deoxyribonucleic acid (DNA) microarray is a collection of microscopic DNA spots attached to a solid surface, such as glass, plastic or silicon chip forming an array. DNA microarray technologies are an essential part of modern biomedical research. The analysis of DNA microarray images allows the identification of gene expressions in order to draw biologically meaningful conclusions for applications that ranges from the genetic profiling to the diagnosis of oncology diseases. Unfortunately, DNA microarray technology has a high variation of data quality. Therefore, in order to obtain reliable results, complex and extensive image analysis algorithms should be applied before actual DNA microarray information can be used for biomedical purpose. In this paper, we present a novel hardware acceleration architecture specifically designed to process and measure DNA microarray images. The proposed architecture uses several units working in a single instruction-multiple data fashion managed by a microprocessor core. An FPGA-based prototypal implementation of the developed architecture is presented. Experimental results on several realistic DNA microarray images show a reduction of the computation time of one order of magnitude if compared with previously developed software-based approach.

3 citations

Proceedings ArticleDOI
01 Oct 2018
TL;DR: The MATS** algorithm is proposed, which is able to reduce the execution time and optimize the fault coverage with respect to most popular embedded memories March Tests, and results to be highly suitable to be executed, even partially, in brief time slots available within the device mission.
Abstract: Modern Field Programmable Gate Arrays (FPGAs) embed dedicated blocks for Memories (BRAMs), digital signal processing (DSPs) and hardwired microprocessors merged with the reconfigurable logic array. This trend, coupled with Error Correction Code (ECC) mechanism and Dynamic Partial Reconfiguration (DPR), makes these devices ideal candidates for mission critical applications where high reliability is a strict requirement. Therefore, efficient and in-field testing became a major concern. Unfortunately, typical on-line memory testing approaches are not fully optimized for the reconfigurable scenario. In fact, a suitable fault model should be considered in order to enhance the fault coverage and reduce the test redundancy. In this work, we proposed the MATS** algorithm, which is able to reduce the execution time and optimize the fault coverage with respect to most popular embedded memories March Tests. Furthermore, MATS** results to be highly suitable to be executed, even partially, in brief time slots available within the device mission. Experimental results show that our approach is around 30% faster than state-of-the-art solutions while achieving the optimal fault coverage.

3 citations

Proceedings ArticleDOI
16 Apr 2019
TL;DR: In this paper, a fault model is proposed which implements the main effects due to radiation-induced transients in the clock network, and the model enables the computation of the functional failure rate caused by Single-Event Transients for each individual clock buffer, as well as the complete network.
Abstract: With technology scaling, lower supply voltages, and higher operating frequencies clock distribution networks become more and more vulnerable to transients faults. These faults can cause circuit-wide effects and thus, significantly contribute to the functional failure rate of the circuit. This paper proposes a methodology to analyse how the functional behaviour is affected by Single-Event Transients in the clock distribution network. The approach is based on logic-level simulation and thus, only uses the register-transfer level description of a design. Therefore, a fault model is proposed which implements the main effects due to radiation-induced transients in the clock network. This fault model enables the computation of the functional failure rate caused by Single-Event Transients for each individual clock buffer, as well as the complete network. Further, it allows the identification of the most vulnerable flip-flops related to SingleEvent Transients in the clock network.The proposed methodology is applied in a practical example and a fault injection campaign is performed. In order to evaluate the impact of Single-Event Transients in clock distribution networks, the obtained functional failure rate is compared to the error rate caused by Single-Event Upsets in the sequential logic.

3 citations

01 Jan 2017
TL;DR: A new analysis to characterize the SET phenomena within Flashbased FPGAs and a new mitigation strategy based on the modification of the place and routed design to improve the filtering capability selectively adding electrical resistive capacitive loads without introducing performance degradation and introducing a limited overhead in terms of routing segments are proposed.
Abstract: Reliability of Integrated Circuits (ICs) it is nowadays a major concern for deep sub-micron technology. The progressive decreasing of device feature sizes provokes an increasing sensitiveness to radiation-induced particle strikes within the device silicon structure generating a larger number of Single Event Transients (SETs). In the present paper, we propose a new analysis to characterize the SET phenomena within Flashbased FPGAs. Besides, we developed a new mitigation strategy based on the modification of the place and routed design to improve the filtering capability selectively adding electrical resistive capacitive loads without introducing performance degradation and introducing a limited overhead in terms of routing segments. Experimental results performed on a various set of benchmark circuits shows a mitigation of SET improved of 3 orders of magnitude with respect to traditional logical filtering solutions with a minimal performance degradation of about 9%.

3 citations

Journal ArticleDOI
TL;DR: OLT(RE) is presented, an on-line on-demand approach to test permanent faults induced by radiation in reconfigurable systems used in space missions, and exploits partial dynamic reconfigurability offered by today's SRAM-based FPGAs to place the test circuits at run-time.
Abstract: Reconfigurable systems gained great interest in a wide range of application fields, including aerospace, where electronic devices are exposed to a very harsh working environment. Commercial SRAM-based FPGA devices represent an extremely interesting hardware platform for this kind of systems since they combine low cost with the possibility to utilize state-of-the-art processing power as well as the flexibility of reconfigurable hardware. In this paper we present OLT(RE) $^2$ : an on-line on-demand approach to test permanent faults induced by radiation in reconfigurable systems used in space missions. The proposed approach relies on a test circuit and on custom place and route algorithms. OLT(RE) $^2$ exploits partial dynamic reconfigurability offered by today's SRAM-based FPGAs to place the test circuits at run-time. The goal of OLT(RE) $^2$ is to test unprogrammed areas of the FPGA before using them, thus preventing functional modules of the reconfigurable system to be placed on areas with faulty resources. Experimental results have shown that (i) it is possible to generate, place and route the test circuits needed to detect on average more than 99 percent of the physical wires and on average about 97 percent of the programmable interconnection points of an arbitrary large region of the FPGA in a reasonable time and that (ii) it is possible to download and run the whole test suite on the target device without interfering with the normal functioning of the system.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of the current understanding of the physiological roles of EVs is provided, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia.
Abstract: In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

3,690 citations

Journal ArticleDOI
TL;DR: Recent progress in understanding extracellular vesicle biology and the role of extrace cellular vesicles in disease is reviewed, emerging therapeutic opportunities are discussed and the associated challenges are considered.
Abstract: Within the past decade, extracellular vesicles have emerged as important mediators of intercellular communication, being involved in the transmission of biological signals between cells in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. In addition, pathophysiological roles for extracellular vesicles are beginning to be recognized in diseases including cancer, infectious diseases and neurodegenerative disorders, highlighting potential novel targets for therapeutic intervention. Moreover, both unmodified and engineered extracellular vesicles are likely to have applications in macromolecular drug delivery. Here, we review recent progress in understanding extracellular vesicle biology and the role of extracellular vesicles in disease, discuss emerging therapeutic opportunities and consider the associated challenges.

2,507 citations

Journal ArticleDOI
16 Mar 2012-Cell
TL;DR: Emerging principles of miRNA regulation of stress signaling pathways are reviewed and applied to the authors' understanding of the roles of miRNAs in disease.

1,491 citations

Journal ArticleDOI
TL;DR: The results show that atheroprotective stimuli induce communication between endothelial cells and SMCs through an miRNA- and extracellular-vesicle-mediated mechanism and that this may comprise a promising strategy to combat atherosclerosis.
Abstract: The shear-responsive transcription factor Kruppel-like factor 2 (KLF2) is a critical regulator of endothelial gene expression patterns induced by atheroprotective flow. As microRNAs (miRNAs) post-transcriptionally control gene expression in many pathogenic and physiological processes, we investigated the regulation of miRNAs by KLF2 in endothelial cells. KLF2 binds to the promoter and induces a significant upregulation of the miR-143/145 cluster. Interestingly, miR-143/145 has been shown to control smooth muscle cell (SMC) phenotypes; therefore, we investigated the possibility of transport of these miRNAs between endothelial cells and SMCs. Indeed, extracellular vesicles secreted by KLF2-transduced or shear-stress-stimulated HUVECs are enriched in miR-143/145 and control target gene expression in co-cultured SMCs. Extracellular vesicles derived from KLF2-expressing endothelial cells also reduced atherosclerotic lesion formation in the aorta of ApoE(-/-) mice. Combined, our results show that atheroprotective stimuli induce communication between endothelial cells and SMCs through an miRNA- and extracellular-vesicle-mediated mechanism and that this may comprise a promising strategy to combat atherosclerosis.

1,182 citations

Journal ArticleDOI
TL;DR: The information synthesized is expected to open new avenues for a large scale use of insect products as animal feed, and the levels of Ca and fatty acids in insect meals can be enhanced by manipulation of the substrate on which insects are reared.

1,068 citations