scispace - formally typeset
Search or ask a question
Author

Lucas Bohnett

Bio: Lucas Bohnett is an academic researcher. The author has contributed to research in topics: Analyte & Calibration. The author has an hindex of 3, co-authored 4 publications receiving 737 citations.

Papers
More filters
Patent
01 Sep 2006
TL;DR: In this paper, a time-dependent algorithmic compensation function is applied to data output from a continuous analyte sensor to determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.
Abstract: Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.

690 citations

Journal ArticleDOI
TL;DR: Use of an 80 mg/dL threshold setting for hypoglycemic alerts on the G4 Platinum (software 505) may provide patients with timely warning of hypoglycemia before the onset of cognitive impairment, enabling them to treat themselves for hyp glucosecemia with fast-acting carbohydrates and prevent neuroglycopenia associated with very low glucose levels.
Abstract: Objective: Accuracy of continuous glucose monitoring (CGM) devices in hypoglycemia has been a widely reported shortcoming of this technology. We report the accuracy in hypoglycemia of a new version of the Dexcom (San Diego, CA) G4 Platinum CGM system (software 505) and present results regarding the optimum setting of CGM hypoglycemic alerts. Materials and Methods: CGM values were compared with YSI analyzer (YSI Life Sciences, Yellow Springs, OH) measurements every 15 min. We reviewed the accuracy of the CGM system in the hypoglycemic range using standard metrics. We analyzed the time required for the CGM system to detect biochemical hypoglycemia (70 mg/dL) compared with the YSI with alert settings at 70 mg/dL and 80 mg/dL. We also analyzed the time between the YSI value crossing 55 mg/dL, defined as the threshold for cognitive impairment due to hypoglycemia, and when the CGM system alerted for hypoglycemia. Results: The mean absolute difference for a glucose level of less than 70 mg/dL was 6 mg/d...

26 citations

Patent
27 Jan 2014
TL;DR: In this paper, a priori calibration distribution information was used to calibrate at least one sensor data point from an analyte sensor, and the data point was converted to sensor data based on the a posteriori distribution information.
Abstract: Systems and methods for processing sensor data and calibration of the sensors are provided. In some embodiments, the method for calibrating at least one sensor data point from an analyte sensor comprises receiving a priori calibration distribution information; receiving one or more real-time inputs that may influence calibration of the analyte sensor; forming a posteriori calibration distribution information based on the one or more real-time inputs; and converting, in real-time, at least one sensor data point calibrated sensor data based on the a posteriori calibration distribution information.

21 citations

Patent
08 Mar 2019
TL;DR: In this article, a priori calibration distribution information was used to calibrate at least one sensor data point from an analyte sensor, and the data point was converted to real-time sensor data based on the a posteriori distribution information.
Abstract: Systems and methods for processing sensor data and calibration of the sensors are provided. In some embodiments, the method for calibrating at least one sensor data point from an analyte sensor comprises receiving a priori calibration distribution information; receiving one or more real-time inputs that may influence calibration of the analyte sensor; forming a posteriori calibration distributioninformation based on the one or more real-time inputs; and converting, in real-time, at least one sensor data point calibrated sensor data based on the a posteriori calibration distribution information.

Cited by
More filters
Patent
30 Oct 2007
TL;DR: An analyte monitor includes a sensor, a sensor control unit, and a display unit as discussed by the authors, which is used to display an indication of a level of an analyte, based on the data obtained using the sensor.
Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.

1,856 citations

Patent
26 Jan 2006
TL;DR: In this paper, the present paper relates to systems and methods for transcutaneous measurement of glucose in a host, and the present invention relates to the system and method for measuring an analyte in the host.
Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.

902 citations

Patent
31 Aug 2009
TL;DR: In this article, a small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described, which is designed to allow "one-point" in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood.
Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.

844 citations

Patent
15 Dec 2004
TL;DR: In this article, the authors present an approach and methods for medical monitoring physiological characteristics values such as blood glucose levels for the treatment of diabetes, and provide dynamic glucose monitoring functions that perform predictive analysis to anticipate harmful conditions, such as glucose crash and hyperglycemic incidents for a patient.
Abstract: Apparatuses and methods for medical monitoring physiological characteristics values such as blood glucose levels for the treatment of diabetes, are presented. The apparatuses and methods provide dynamic glucose monitoring functions that perform predictive analysis to anticipate harmful conditions, such as glucose crash and hyperglycemic incidents for a patient. The dynamic functions can also be used to maximize athletic performance and warn of inadequate nocturnal basal rate. Other aspects include advanced alarm and reminder functions, as well as advanced data presentation tools to further facilitate convenient and efficient management of various physiological conditions.

803 citations

Patent
18 Dec 2008
TL;DR: In this paper, a body fluid sampling system for use on a tissue site includes a single drive force generator and a plurality of penetrating members are operatively coupled to the force generator.
Abstract: A body fluid sampling system for use on a tissue site includes a single drive force generator. A plurality of penetrating members are operatively coupled to the force generator. The force generator moves each of the members along a path out of a housing with a penetrating member exit, into the tissue site, stops in the tissue site, and withdraws out of the tissue site. A flexible support member couples the penetrating members to define a linear array. The support member is movable and configured to move each of the penetrating members to a launch position associated with the force generator.

720 citations