scispace - formally typeset
Search or ask a question
Author

Lucas G. Horta

Bio: Lucas G. Horta is an academic researcher from Langley Research Center. The author has contributed to research in topics: System identification & Observer (quantum physics). The author has an hindex of 22, co-authored 91 publications receiving 2132 citations.


Papers
More filters
Proceedings ArticleDOI
01 Jun 1991
TL;DR: In this paper, an algorithm to compute Markov parameters of an observer or Kalman filter from experimental input and output data is discussed, which can then be used for identification of a state space representation with associated Kalman gain or observer gain for the purpose of controller design.
Abstract: An algorithm to compute Markov parameters of an observer or Kalman filter from experimental input and output data is discussed The Markov parameters can then be used for identification of a state space representation, with associated Kalman gain or observer gain, for the purpose of controller design The algorithm is a non-recursive matrix version of two recursive algorithms developed in previous works for different purposes The relationship between these other algorithms is developed The new matrix formulation here gives insight into the existence and uniqueness of solutions of certain equations and gives bounds on the proper choice of observer order It is shown that if one uses data containing noise, and seeks the fastest possible deterministic observer, the deadbeat observer, one instead obtains the Kalman filter, which is the fastest possible observer in the stochastic environment Results are demonstrated in numerical studies and in experiments on an ten-bay truss structure

449 citations

Journal ArticleDOI
TL;DR: In this article, an algorithm to compute Markov parameters of an observer or Kalman filter from experimental input and output data is discussed, which can be used for identification of a state space representation, with associated Kalman gain or observer gain, for the purpose of controller design.
Abstract: An algorithm to compute Markov parameters of an observer or Kalman filter from experimental input and output data is discussed. The Markov parameters can then be used for identification of a state space representation, with associated Kalman gain or observer gain, for the purpose of controller design. The algorithm is a non-recursive matrix version of two recursive algorithms developed in previous works for different purposes. The relationship between these other algorithms is developed. The new matrix formulation here gives insight into the existence and uniqueness of solutions of certain equations and gives bounds on the proper choice of observer order. It is shown that if one uses data containing noise, and seeks the fastest possible deterministic observer, the deadbeat observer, one instead obtains the Kalman filter, which is the fastest possible observer in the stochastic environment. Results are demonstrated in numerical studies and in experiments on an ten-bay truss structure.

348 citations

Journal ArticleDOI
TL;DR: In this paper, a formulation for identification of linear multivariable systems from single or multiple sets of input-output data is presented, where the observer is expressed in terms of an observer, which is made asymptotically stable by an embedded eigenvalue assignment procedure.
Abstract: This paper presents a formulation for identification of linear multivariable systems from single or multiple sets of input-output data. The system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded eigenvalue assignment procedure. The prescribed eigenvalues for the observer may be real, complex, mixed real and complex, or zero corresponding to a deadbeat observer. In this formulation, the Markov parameters of the observer are first identified from input-output data. The Markov parameters of the actual system are then recovered from those of the observer and used to realize a state space model of the system. The basic mathematical formulation is derived, and numerical examples are presented to illustrate the proposed method.

139 citations

Journal ArticleDOI
TL;DR: In this paper, a hardware setup has been developed to study slewing control for flexible structures including a steel beam and a solar panel, where the linear optimal terminal control law is used to design active controllers that are implemented in an analog computer.
Abstract: A hardware setup has been developed to study slewing control for flexible structures including a steel beam and a solar panel. The linear optimal terminal control law is used to design active controllers that are implemented in an analog computer. The objective of this experiment is to demonstrate and verify the dynamics and optimal terminal control laws as applied to flexible structures for large-angle maneuver. Actuation is provided by an electric motor while sensing is given by strain gages and angle potentiometers. Experimental measurements are compared with analytical predictions in terms of modal parameters of the system stability matrix, and sufficient agreement is achieved to validate the theory.

114 citations

Proceedings ArticleDOI
09 Jul 2002
TL;DR: The NASA Morphing Project as discussed by the authors seeks to develop and assess advanced technologies and integrated component concepts to enable efficient, multi-point adaptability in air and space vehicles, including smart materials, adaptive structures, micro flow control, biomimetic concepts, optimization and controls.
Abstract: The NASA Morphing Project seeks to develop and assess advanced technologies and integrated component concepts to enable efficient, multi-point adaptability in air and space vehicles. In the context of the project, the word "morphing" is defined as "efficient, multi-point adaptability" and may include macro, micro, structural and/or fluidic approaches. The project includes research on smart materials, adaptive structures, micro flow control, biomimetic concepts, optimization and controls. This paper presents an updated overview of the content of the Morphing Project including highlights of recent research results.

100 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: A new approach is introduced in conjunction with the singular value decomposition technique to derive the basic formulation of minimum order realization which is an extended version of the Ho-Kalman algorithm.
Abstract: A method, called the Eigensystem Realization Algorithm (ERA), is developed for modal parameter identification and model reduction of dynamic systems from test data. A new approach is introduced in conjunction with the singular value decomposition technique to derive the basic formulation of minimum order realization which is an extended version of the Ho-Kalman algorithm. The basic formulation is then transformed into modal space for modal parameter identification. Two accuracy indicators are developed to quantitatively identify the system modes and noise modes. For illustration of the algorithm, examples are shown using simulation data and experimental data for a rectangular grid structure.

2,366 citations

Journal ArticleDOI
TL;DR: In this paper, the authors classify the shape morphing parameters that can be affected by planform alteration (span, sweep, and chord), out-of-plane transformation (twist, dihedral/gull, and span-wise bending), and airfoil adjustment (camber and thickness).
Abstract: Aircraft wings are a compromise that allows the aircraft to fly at a range of flight conditions, but the performance at each condition is sub-optimal. The ability of a wing surface to change its geometry during flight has interested researchers and designers over the years as this reduces the design compromises required. Morphing is the short form for metamorphose; however, there is neither an exact definition nor an agreement between the researchers about the type or the extent of the geometrical changes necessary to qualify an aircraft for the title ‘shape morphing.’ Geometrical parameters that can be affected by morphing solutions can be categorized into: planform alteration (span, sweep, and chord), out-of-plane transformation (twist, dihedral/gull, and span-wise bending), and airfoil adjustment (camber and thickness). Changing the wing shape or geometry is not new. Historically, morphing solutions always led to penalties in terms of cost, complexity, or weight, although in certain circumstances, thes...

1,068 citations

Journal ArticleDOI
TL;DR: A theoretical framework in which dynamic mode decomposition is defined as the eigendecomposition of an approximating linear operator, which generalizes DMD to a larger class of datasets, including nonsequential time series, and shows that under certain conditions, DMD is equivalent to LIM.
Abstract: Originally introduced in the fluid mechanics community, dynamic mode decomposition (DMD) has emerged as a powerful tool for analyzing the dynamics of nonlinear systems. However, existing DMD theory deals primarily with sequential time series for which the measurement dimension is much larger than the number of measurements taken. We present a theoretical framework in which we define DMD as the eigendecomposition of an approximating linear operator. This generalizes DMD to a larger class of datasets, including nonsequential time series. We demonstrate the utility of this approach by presenting novel sampling strategies that increase computational efficiency and mitigate the effects of noise, respectively. We also introduce the concept of linear consistency, which helps explain the potential pitfalls of applying DMD to rank-deficient datasets, illustrating with examples. Such computations are not considered in the existing literature, but can be understood using our more general framework. In addition, we show that our theory strengthens the connections between DMD and Koopman operator theory. It also establishes connections between DMD and other techniques, including the eigensystem realization algorithm (ERA), a system identification method, and linear inverse modeling (LIM), a method from climate science. We show that under certain conditions, DMD is equivalent to LIM.

1,067 citations

Journal ArticleDOI
TL;DR: This work develops a new method which extends dynamic mode decomposition (DMD) to incorporate the effect of control to extract low-order models from high-dimensional, complex systems and provides the additional innovation of being able to disambiguate between the underlying dynamics and the effects of actuation, resulting in accurate input-output models.
Abstract: We develop a new method which extends dynamic mode decomposition (DMD) to incorporate the effect of control to extract low-order models from high-dimensional, complex systems. DMD finds spatial-temporal coherent modes, connects local-linear analysis to nonlinear operator theory, and provides an equation-free architecture which is compatible with compressive sensing. In actuated systems, DMD is incapable of producing an input-output model; moreover, the dynamics and the modes will be corrupted by external forcing. Our new method, dynamic mode decomposition with control (DMDc), capitalizes on all of the advantages of DMD and provides the additional innovation of being able to disambiguate between the underlying dynamics and the effects of actuation, resulting in accurate input-output models. The method is data-driven in that it does not require knowledge of the underlying governing equations---only snapshots in time of observables and actuation data from historical, experimental, or black-box simulations. W...

665 citations