scispace - formally typeset
Search or ask a question
Author

Lucie Büchi

Other affiliations: University of Lausanne
Bio: Lucie Büchi is an academic researcher from University of Greenwich. The author has contributed to research in topics: Cover crop & Tillage. The author has an hindex of 16, co-authored 40 publications receiving 1104 citations. Previous affiliations of Lucie Büchi include University of Lausanne.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that agricultural intensification reduces network complexity and the abundance of keystone taxa in the root microbiome, and this is the first study to report mycorrhizal keystoneTaxa for agroecosystems.
Abstract: Root-associated microbes play a key role in plant performance and productivity, making them important players in agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong negative association (R2 = 0.366; P < 0.0001) between agricultural intensification and root fungal network connectivity. The occurrence of keystone taxa was best explained by soil phosphorus levels, bulk density, pH, and mycorrhizal colonization. The majority of keystone taxa are known to form arbuscular mycorrhizal associations with plants and belong to the orders Glomerales, Paraglomerales, and Diversisporales. Supporting this, the abundance of mycorrhizal fungi in roots and soils was also significantly higher under organic farming. To our knowledge, this is the first study to report mycorrhizal keystone taxa for agroecosystems, and we demonstrate that agricultural intensification reduces network complexity and the abundance of keystone taxa in the root microbiome.

573 citations

Journal ArticleDOI
TL;DR: This work addressed the question of the coexistence of specialist and generalist species with a spatially explicit metacommunity model in continuous and heterogeneous environments by characterized how species’ dispersal abilities, the number of interacting species, environmental spatial autocorrelation, and disturbance impact community composition.
Abstract: Disentangling the mechanisms mediating the coexistence of habitat specialists and generalists has been a long-standing subject of investigation. However, the roles of species traits and environmental and spatial factors have not been assessed in a unifying theoretical framework. Theory suggests that specialist species are more competitive in natural communities. However, empirical work has shown that specialist species are declining worldwide due to habitat loss and fragmentation. We addressed the question of the coexistence of specialist and generalist species with a spatially explicit metacommunity model in continuous and heterogeneous environments. We characterized how species' dispersal abilities, the number of interacting species, environmental spatial autocorrelation, and disturbance impact community composition. Our results demonstrated that species' dispersal ability and the number of interacting species had a drastic influence on the composition of metacommunities. More specialized species coexisted when species had large dispersal abilities and when the number of interacting species was high. Disturbance selected against highly specialized species, whereas environmental spatial autocorrelation had a marginal impact. Interestingly, species richness and niche breadth were mainly positively correlated at the community scale but were negatively correlated at the metacommunity scale. Numerous diversely specialized species can thus coexist, but both species' intrinsic traits and environmental factors interact to shape the specialization signatures of communities at both the local and global scales.

155 citations

Journal ArticleDOI
01 Feb 2006-Genetics
TL;DR: Provided that estimates of QST are derived from individuals originating from many populations, it is concluded that the pattern QST > FST, and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.
Abstract: To test whether quantitative traits are under directional or homogenizing selection, it is common practice to compare population differentiation estimates at molecular markers (FST) and quantitative traits (QST). If the trait is neutral and its determinism is additive, then theory predicts that QST = FST, while QST > FST is predicted under directional selection for different local optima, and QST 20) with few families (five) rather than few populations with many families. Provided that estimates of QST are derived from individuals originating from many populations, we conclude that the pattern QST > FST, and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.

117 citations

Journal ArticleDOI
TL;DR: The same amounts of nutrients were accumulated by groups with different acquisition strategies, however, their nutrient concentrations offer different perspectives in terms of nutrient release for the subsequent crop and nutrient cycling improvement.
Abstract: Cover crops play an important role in soil fertility as they can accumulate large amounts of nutrients. This study aimed at understanding the nutrient uptake capacity of a wide range of cover crops and at assessing the relevance of acquisition strategies. A field experiment was conducted to characterize 20 species in terms of leaf and root traits. Plant traits were related to nutrient concentration and shoot biomass production with a redundancy analysis. Acquisition strategies were identified using a cluster analysis. Root systems varied greatly among cover crop species. Five nutrient acquisition strategies were delineated. Significant amounts of nutrients (about 120 kg ha−1 of nitrogen, 30 kg ha−1 of phosphorus and 190 kg ha−1 of potassium) were accumulated by the species in a short period. Nutrient acquisition strategies related to high accumulations of nutrients consisted in either high shoot biomass and root mass and dense tissues, or high nutrient concentrations and root length densities. Species with high root length densities showed lower C/N ratios. The same amounts of nutrients were accumulated by groups with different acquisition strategies. However, their nutrient concentrations offer different perspectives in terms of nutrient release for the subsequent crop and nutrient cycling improvement.

85 citations

Journal ArticleDOI
TL;DR: In this paper, the results from a three-year experiment of cover crop cultivation in different soil tillage treatments is presented, together with results from DayCent simulations on the long term evolution of soil organic carbon and total nitrogen.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: A survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges indicates that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

2,100 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of known cases of mito-nuclear discordance in animal systems and summarize the biogeographic patterns in each instance and identify common drivers of discordance.
Abstract: Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and/or adaptive introgression. In addition, we discuss the problems with inferring the processes causing discordance from biogeographic patterns that are common in many studies. In many cases, authors presented more than one explanation for discordant patterns in a given system, which indicates that likely more data are required. Ideally, to resolve this issue, we see important future work shifting focus from documenting the prevalence of mito-nuclear discordance towards testing hypotheses regarding the drivers of discordance. Indeed, there is great potential for certain cases of mitochondrial introgression to become important natural systems within which to test the effect of different mitochondrial genotypes on whole-animal phenotypes.

1,112 citations