scispace - formally typeset
Search or ask a question
Author

Lucio Rossi

Bio: Lucio Rossi is an academic researcher from CERN. The author has contributed to research in topics: Large Hadron Collider & Superconducting magnet. The author has an hindex of 56, co-authored 253 publications receiving 14876 citations. Previous affiliations of Lucio Rossi include National Academy of Sciences of Belarus & University of Milan.


Papers
More filters
Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3098 moreInstitutions (192)
TL;DR: In this article, the authors used the ATLAS detector to detect dijet asymmetry in the collisions of lead ions at the Large Hadron Collider and found that the transverse energies of dijets in opposite hemispheres become systematically more unbalanced with increasing event centrality, leading to a large number of events which contain highly asymmetric di jets.
Abstract: By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse energies of dijets in opposite hemispheres are observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

630 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

526 citations

Journal ArticleDOI
L. Accardo1, M. Aguilar, D. Aisa2, D. Aisa1  +308 moreInstitutions (28)
TL;DR: The new results show, for the first time, that above ∼200 GeV the positron fraction no longer exhibits an increase with energy.
Abstract: A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above ∼200 GeV the positron fraction no longer exhibits an increase with energy.

513 citations

Journal ArticleDOI
Georges Aad, B. Abbott1, Jalal Abdallah2, A. A. Abdelalim3  +3013 moreInstitutions (174)
TL;DR: In this article, detailed measurements of the electron performance of the ATLAS detector at the LHC were reported, using decays of the Z, W and J/psi particles.
Abstract: Detailed measurements of the electron performance of the ATLAS detector at the LHC are reported, using decays of the Z, W and J/psi particles. Data collected in 2010 at root s = 7 TeV are used, corresponding to an integrated luminosity of almost 40 pb(-1). The inter-alignment of the inner detector and the electromagnetic calorimeter, the determination of the electron energy scale and resolution, and the performance in terms of response uniformity and linearity are discussed. The electron identification, reconstruction and trigger efficiencies, as well as the charge misidentification probability, are also presented.

505 citations


Cited by
More filters
Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations

Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations

Journal ArticleDOI
TL;DR: In this article, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test is presented, which is based on LO, NLO and NNLO QCD theory and also includes electroweak corrections.
Abstract: We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.

2,028 citations

Journal ArticleDOI
TL;DR: In this article, the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3 is presented, which includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all relevant LHC Data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run,

1,809 citations