scispace - formally typeset
Search or ask a question
Author

Lucy Bird

Bio: Lucy Bird is an academic researcher. The author has contributed to research in topics: T cell & Innate immune system. The author has an hindex of 6, co-authored 324 publications receiving 319 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Two papers show that combining IL-1 blockade with chimeric antigen receptor T cell therapy for cancer can prevent the induction of a potentially lethal ‘cytokine storm’.
Abstract: Two papers show that combining IL-1 blockade with chimeric antigen receptor T cell therapy for cancer can prevent the induction of a potentially lethal ‘cytokine storm’.

19 citations

Journal ArticleDOI
TL;DR: A new study shows that immune activation after infection involves competition for energy with physiological programmes such as maintaining a normal body temperature, which favours immune tolerance as a strategy for host defence.
Abstract: A new study shows that immune activation after infection involves competition for energy with physiological programmes such as maintaining a normal body temperature. This trade-off favours immune tolerance as a strategy for host defence.

14 citations

Journal ArticleDOI
TL;DR: Innate lymphoid cells help to retain commensal bacteria in anatomical niches and prevent systemic inflammation.
Abstract: Innate lymphoid cells help to retain commensal bacteria in anatomical niches and prevent systemic inflammation.

10 citations

Journal ArticleDOI

10 citations


Cited by
More filters
Journal Article
TL;DR: Schulz et al. as discussed by the authors investigated whether adult macrophages all share a common developmental origin and found that a population of yolk-sac-derived, tissue-resident macophages was able to develop and persist in adult mice in the absence of hematopoietic stem cells.
Abstract: Macrophage Development Rewritten Macrophages provide protection against a wide variety of infections and critically shape the inflammatory environment in many tissues. These cells come in many flavors, as determined by differences in gene expression, cell surface phenotype and specific function. Schulz et al. (p. 86, published online 22 March) investigated whether adult macrophages all share a common developmental origin. Immune cells, including most macrophages, are widely thought to arise from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development. Analysis of Myb-deficient mice revealed that a population of yolk-sac–derived, tissue-resident macrophages was able to develop and persist in adult mice in the absence of HSCs. Importantly, yolk sac–derived macrophages also contributed substantially to the tissue macrophage pool even when HSCs were present. In mice, a population of tissue-resident macrophages arises independently of bone marrow–derived stem cells. Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11bhigh monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80bright macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia—cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.

1,673 citations

Journal ArticleDOI
TL;DR: The role of lymphocyte metabolism on immune cell development and function and the importance of “goodtenance” in immune cell function is discussed.
Abstract: Lymphocytes must adapt to a wide array of environmental stressors as part of their normal development, during which they undergo a dramatic metabolic remodeling process. Research in this area has yielded surprising findings on the roles of diverse metabolic pathways and metabolites, which have been found to regulate lymphocyte signaling and influence differentiation, function and fate. In this review, we integrate the latest findings in the field to provide an up-to-date resource on lymphocyte metabolism.

847 citations

Journal ArticleDOI
01 Jul 2015-Cytokine
TL;DR: Whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful are discussed.

792 citations

Journal ArticleDOI
TL;DR: This work has shown that Krebs cycle intermediates such as succinate, fumarate and citrate engage in processes related to immunity and inflammation, in both innate and adaptive immune cells.
Abstract: Recent evidence indicates that mitochondria lie at the heart of immunity. Mitochondrial DNA acts as a danger-associated molecular pattern (DAMP), and the mitochondrial outer membrane is a platform for signaling molecules such as MAVS in RIG-I signaling, and for the NLRP3 inflammasome. Mitochondrial biogenesis, fusion and fission have roles in aspects of immune-cell activation. Most important, Krebs cycle intermediates such as succinate, fumarate and citrate engage in processes related to immunity and inflammation, in both innate and adaptive immune cells. These discoveries are revealing mitochondrial targets that could potentially be exploited for therapeutic gain in inflammation and cancer.

645 citations

Journal Article
TL;DR: It is shown that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trms cells in skin, gut, liver, and kidney in mice.
Abstract: Transcription factors define tissue T cells The immune system fights microbial invaders by maintaining multiple lines of defense. For instance, specialized memory T cells [resident memory T cells (Trms)] colonize portals of pathogen entry, such as the skin, lung, and gut, to quickly halt reinfections. Mackay et al. now report that in mice, Trms as well as other tissue-dwelling lymphocyte populations such as natural killer cells share a common transcriptional program driven by the related transcription factors Hobit and Blimp1. Tissue residency and retention of lymphocytes require expression of Hobit and Blimp1, which, among other functions, suppress genes that promote tissue exit. Science, this issue p. 459 Tissue-dwelling lymphocyte populations share a common transcriptional signature. Tissue-resident memory T (Trm) cells permanently localize to portals of pathogen entry, where they provide immediate protection against reinfection. To enforce tissue retention, Trm cells up-regulate CD69 and down-regulate molecules associated with tissue egress; however, a Trm-specific transcriptional regulator has not been identified. Here, we show that the transcription factor Hobit is specifically up-regulated in Trm cells and, together with related Blimp1, mediates the development of Trm cells in skin, gut, liver, and kidney in mice. The Hobit-Blimp1 transcriptional module is also required for other populations of tissue-resident lymphocytes, including natural killer T (NKT) cells and liver-resident NK cells, all of which share a common transcriptional program. Our results identify Hobit and Blimp1 as central regulators of this universal program that instructs tissue retention in diverse tissue-resident lymphocyte populations.

373 citations