scispace - formally typeset
Search or ask a question
Author

Ludovic Tricoire

Bio: Ludovic Tricoire is an academic researcher from University of Paris. The author has contributed to research in topics: Interneuron & Metabotropic glutamate receptor. The author has an hindex of 20, co-authored 37 publications receiving 1969 citations. Previous affiliations of Ludovic Tricoire include National Institutes of Health & Pierre-and-Marie-Curie University.

Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the current state of the field of interneuron research, focusing largely on the hippocampus, discusses recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations.
Abstract: In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10–15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.

545 citations

Journal ArticleDOI
TL;DR: It is found that hippocampal interneurons are produced in two neurogenic waves between E9–E12 and E12–E16 from MGE and CGE, respectively, and invade the hippocampus by E14, which provides a basic blueprint of the developmental origins of hippocampalinterneuron diversity.
Abstract: Although vastly outnumbered, inhibitory interneurons critically pace and synchronize excitatory principal cell populations to coordinate cortical information processing. Precision in this control relies upon a remarkable diversity of interneurons primarily determined during embryogenesis by genetic restriction of neuronal potential at the progenitor stage. Like their neocortical counterparts, hippocampal interneurons arise from medial and caudal ganglionic eminence (MGE and CGE) precursors. However, while studies of the early specification of neocortical interneurons are rapidly advancing, similar lineage analyses of hippocampal interneurons have lagged. A "hippocampocentric" investigation is necessary as several hippocampal interneuron subtypes remain poorly represented in the neocortical literature. Thus, we investigated the spatiotemporal origins of hippocampal interneurons using transgenic mice that specifically report MGE- and CGE-derived interneurons either constitutively or inducibly. We found that hippocampal interneurons are produced in two neurogenic waves between E9-E12 and E12-E16 from MGE and CGE, respectively, and invade the hippocampus by E14. In the mature hippocampus, CGE-derived interneurons primarily localize to superficial layers in strata lacunosum moleculare and deep radiatum, while MGE-derived interneurons readily populate all layers with preference for strata pyramidale and oriens. Combined molecular, anatomical, and electrophysiological interrogation of MGE/CGE-derived interneurons revealed that MGE produces parvalbumin-, somatostatin-, and nitric oxide synthase-expressing interneurons including fast-spiking basket, bistratified, axo-axonic, oriens-lacunosum moleculare, neurogliaform, and ivy cells. In contrast, CGE-derived interneurons contain cholecystokinin, calretinin, vasoactive intestinal peptide, and reelin including non-fast-spiking basket, Schaffer collateral-associated, mossy fiber-associated, trilaminar, and additional neurogliaform cells. Our findings provide a basic blueprint of the developmental origins of hippocampal interneuron diversity.

269 citations

Journal ArticleDOI
TL;DR: These findings identify ErbB4-expressing interneurons, but not pyramidal neurons, as a primary target of NRG signaling in the hippocampus and implicate ErBB4 as a selective marker for glutamatergic synapses on inhibitory interneuronons.
Abstract: NRG1 and ERBB4 have emerged as some of the most reproducible schizophrenia risk genes. Moreover, the Neuregulin (NRG)/ErbB4 signaling pathway has been implicated in dendritic spine morphogenesis, glutamatergic synaptic plasticity, and neural network control. However, despite much attention this pathway and its effects on pyramidal cells have received recently, the presence of ErbB4 in these cells is still controversial. As knowledge of the precise locus of receptor expression is crucial to delineating the mechanisms by which NRG signaling elicits its diverse physiological effects, we have undertaken a thorough analysis of ErbB4 distribution in the CA1 area of the rodent hippocampus using newly generated rabbit monoclonal antibodies and ErbB4-mutant mice as negative controls. We detected ErbB4 immunoreactivity in GABAergic interneurons but not in pyramidal neurons, a finding that was further corroborated by the lack of ErbB4 mRNA in electrophysiologically identified pyramidal neurons as determined by single-cell reverse transcription-PCR. Contrary to some previous reports, we also did not detect processed ErbB4 fragments or nuclear ErbB4 immunoreactivity. Ultrastructural analysis in CA1 interneurons using immunoelectron microscopy revealed abundant ErbB4 expression in the somatodendritic compartment in which it accumulates at, and adjacent to, glutamatergic postsynaptic sites. In contrast, we found no evidence for presynaptic expression in cultured GAD67-positive hippocampal interneurons and in CA1 basket cell terminals. Our findings identify ErbB4-expressing interneurons, but not pyramidal neurons, as a primary target of NRG signaling in the hippocampus and, furthermore, implicate ErbB4 as a selective marker for glutamatergic synapses on inhibitory interneurons.

206 citations

Journal ArticleDOI
TL;DR: The authors investigated the developmental origins of GABAergic interneurons and found that they are derived from medial ganglionic eminence progenitors under control of the transcription factor Nkx2-1.
Abstract: GABAergic interneurons critically regulate cortical computation through exquisite spatio-temporal control over excitatory networks. Precision of this inhibitory control requires a remarkable diversity within interneuron populations that is largely specified during embryogenesis. Although nNOS+ interneurons constitute the largest hippocampal interneuron cohort their origin and specification remain unknown. Thus, as neurogliaform (NGC) and Ivy cells (IvC) represent the main nNOS+ interneurons we investigated their developmental origins. Although considered distinct interneuron subtypes NGCs and IvCs exhibited similar neurochemical and electrophysiological signatures including NPY expression and late-spiking. Moreover, lineage analyses, including loss-of-function experiments and inducible fate-mapping, indicated that nNOS+ IvCs and NGCs are both derived from medial ganglionic eminence (MGE) progenitors under control of the transcription factor Nkx2-1. Surprisingly, a subset of NGCs lacking nNOS arises from caudal ganglionic eminence (CGE) progenitors. Thus, while nNOS+ NGCs and IvCs arise from MGE progenitors, a CGE origin distinguishes a discrete population of nNOS-NGCs.

155 citations

Journal ArticleDOI
TL;DR: It is shown that three classes of depolarization-induced suppression of inhibition-expressing, cholecystokinin (CCK)-containing, hippocampal interneurons show highly asynchronous release in response to trains of action potentials, indicating a fundamental role for these cells within the hippocampal network that is distinct from the phasic inhibition provided by parvalbumin-containing interneuron.
Abstract: Neurotransmitter release at most central synapses is synchronized to the timing of presynaptic action potentials. Here, we show that three classes of depolarization-induced suppression of inhibition-expressing, cholecystokinin (CCK)-containing, hippocampal interneurons show highly asynchronous release in response to trains of action potentials. This asynchrony is correlated to the class of presynaptic interneuron but is unrelated to their postsynaptic cell target. Asynchronous and synchronous release from CCK-containing interneurons show a slightly different calcium dependence, such that the proportion of asynchronous release increases with external calcium concentration, possibly suggesting that the modes of release are mediated by different calcium sensors. Asynchronous IPSCs include very large (up to 500 pA/7nS) amplitude events, which persist in low extracellular calcium and strontium, showing that they result from quantal transmitter release at single release sites. Finally, we show that asynchronous release is prominent in response to trains of presynaptic spikes that mimic natural activity of CCK-containing interneurons. That asynchronous release from CCK-containing interneurons is a widespread phenomenon indicates a fundamental role for these cells within the hippocampal network that is distinct from the phasic inhibition provided by parvalbumin-containing interneurons.

146 citations


Cited by
More filters
Journal ArticleDOI
06 Mar 2015-Science
TL;DR: Large-scale single-cell RNA sequencing is used to classify cells in the mouse somatosensory cortex and hippocampal CA1 region and found 47 molecularly distinct subclasses, comprising all known major cell types in the cortex.
Abstract: The mammalian cerebral cortex supports cognitive functions such as sensorimotor integration, memory, and social behaviors. Normal brain function relies on a diverse set of differentiated cell types, including neurons, glia, and vasculature. Here, we have used large-scale single-cell RNA sequencing (RNA-seq) to classify cells in the mouse somatosensory cortex and hippocampal CA1 region. We found 47 molecularly distinct subclasses, comprising all known major cell types in the cortex. We identified numerous marker genes, which allowed alignment with known cell types, morphology, and location. We found a layer I interneuron expressing Pax6 and a distinct postmitotic oligodendrocyte subclass marked by Itpr2. Across the diversity of cortical cell types, transcription factors formed a complex, layered regulatory code, suggesting a mechanism for the maintenance of adult cell type identity.

2,675 citations

Journal ArticleDOI
20 Jul 2016-Neuron
TL;DR: Current understanding of neocortical interneuron diversity and the properties that distinguish cell types are reviewed and it is illustrated how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.

1,358 citations

Journal ArticleDOI
TL;DR: The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states andbehavioral contexts.
Abstract: An understanding of the diversity of cortical GABAergic interneurons is critical to understand the function of the cerebral cortex. Recent data suggest that neurons expressing three markers, the Ca2+-binding protein parvalbumin (PV), the neuropeptide somatostatin (SST), and the ionotropic serotonin receptor 5HT3a (5HT3aR) account for nearly 100% of neocortical interneurons. Interneurons expressing each of these markers have a different embryological origin. Each group includes several types of interneurons that differ in morphological and electrophysiological properties and likely have different functions in the cortical circuit. The PV group accounts for ∼40% of GABAergic neurons and includes fast spiking basket cells and chandelier cells. The SST group, which represents ∼30% of GABAergic neurons, includes the Martinotti cells and a set of neurons that specifically target layerIV. The 5HT3aR group, which also accounts for ∼30% of the total interneuronal population, is heterogeneous and includes all of the neurons that express the neuropeptide VIP, as well as an equally numerous subgroup of neurons that do not express VIP and includes neurogliaform cells. The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states and behavioral contexts.

1,211 citations

Journal ArticleDOI
TL;DR: In conclusion, animal models demonstrate that the molecular basis of disruption is linked to specific defects in the development and function of interneurons — the cells that are responsible for establishing inhibitory circuits in the brain.
Abstract: The notion that the disruption of inhibitory circuits might underlie certain clinical features — notably cognitive impairment — in various neuropsychiatric disorders, including schizophrenia and autism, is receiving considerable attention. Focusing heavily on studies in animal models, Oscar Marin reviews the evidence indicating that the basis of such disruption is linked to specific defects in interneuron development and function.

991 citations

Journal ArticleDOI
16 Jan 2014-Nature
TL;DR: This perspective emphasizes that the ultimate goal is to dispense with classification criteria and directly define interneuron types by function, and views them as elaborations of a much more finite group of developmentally specified cardinal classes that become further specialized as they mature.
Abstract: Understanding brain circuits begins with an appreciation of their component parts - the cells. Although GABAergic interneurons are a minority population within the brain, they are crucial for the control of inhibition. Determining the diversity of these interneurons has been a central goal of neurobiologists, but this amazing cell type has so far defied a generalized classification system. Interneuron complexity within the telencephalon could be simplified by viewing them as elaborations of a much more finite group of developmentally specified cardinal classes that become further specialized as they mature. Our perspective emphasizes that the ultimate goal is to dispense with classification criteria and directly define interneuron types by function.

927 citations