scispace - formally typeset
Search or ask a question
Author

Luigi Alfredo Grieco

Bio: Luigi Alfredo Grieco is an academic researcher from Instituto Politécnico Nacional. The author has contributed to research in topics: Quality of service & The Internet. The author has an hindex of 38, co-authored 197 publications receiving 7910 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the main research challenges and the existing solutions in the field of IoT security, identifying open issues and suggesting some hints for future research, and suggest some hints to future research.

1,258 citations

Journal ArticleDOI
TL;DR: An overview on the key issues that arise in the design of a resource allocation algorithm for LTE networks is provided, intended for a wide range of readers as it covers the topic from basics to advanced aspects.
Abstract: Future generation cellular networks are expected to provide ubiquitous broadband access to a continuously growing number of mobile users. In this context, LTE systems represent an important milestone towards the so called 4G cellular networks. A key feature of LTE is the adoption of advanced Radio Resource Management procedures in order to increase the system performance up to the Shannon limit. Packet scheduling mechanisms, in particular, play a fundamental role, because they are responsible for choosing, with fine time and frequency resolutions, how to distribute radio resources among different stations, taking into account channel condition and QoS requirements. This goal should be accomplished by providing, at the same time, an optimal trade-off between spectral efficiency and fairness. In this context, this paper provides an overview on the key issues that arise in the design of a resource allocation algorithm for LTE networks. It is intended for a wide range of readers as it covers the topic from basics to advanced aspects. The downlink channel under frequency division duplex configuration is considered as object of our study, but most of the considerations are valid for other configurations as well. Moreover, a survey on the most recent techniques is reported, including a classification of the different approaches presented in literature. Performance comparisons of the most well-known schemes, with particular focus on QoS provisioning capabilities, are also provided for complementing the described concepts. Thus, this survey would be useful for readers interested in learning the basic concepts before going into the details of a particular scheduling strategy, as well as for researchers aiming at deepening more specific aspects.

817 citations

Journal ArticleDOI
TL;DR: The wireless communications stack the industry believes to meet the important criteria of power-efficiency, reliability and Internet connectivity, and the protocol stack proposed in the present work converges towards the standardized notations of the ISO/OSI and TCP/IP stacks is proposed.
Abstract: We have witnessed the Fixed Internet emerging with virtually every computer being connected today; we are currently witnessing the emergence of the Mobile Internet with the exponential explosion of smart phones, tablets and net-books. However, both will be dwarfed by the anticipated emergence of the Internet of Things (IoT), in which everyday objects are able to connect to the Internet, tweet or be queried. Whilst the impact onto economies and societies around the world is undisputed, the technologies facilitating such a ubiquitous connectivity have struggled so far and only recently commenced to take shape. To this end, this paper introduces in a timely manner and for the first time the wireless communications stack the industry believes to meet the important criteria of power-efficiency, reliability and Internet connectivity. Industrial applications have been the early adopters of this stack, which has become the de-facto standard, thereby bootstrapping early IoT developments with already thousands of wireless nodes deployed. Corroborated throughout this paper and by emerging industry alliances, we believe that a standardized approach, using latest developments in the IEEE 802.15.4 and IETF working groups, is the only way forward. We introduce and relate key embodiments of the power-efficient IEEE 802.15.4-2006 PHY layer, the power-saving and reliable IEEE 802.15.4e MAC layer, the IETF 6LoWPAN adaptation layer enabling universal Internet connectivity, the IETF ROLL routing protocol enabling availability, and finally the IETF CoAP enabling seamless transport and support of Internet applications. The protocol stack proposed in the present work converges towards the standardized notations of the ISO/OSI and TCP/IP stacks. What thus seemed impossible some years back, i.e., building a clearly defined, standards-compliant and Internet-compliant stack given the extreme restrictions of IoT networks, is commencing to become reality.

723 citations

Journal ArticleDOI
TL;DR: The open-source framework LTE-Sim is presented to provide a complete performance verification of LTE networks and has been conceived to simulate uplink and downlink scheduling strategies in multicell/multiuser environments, taking into account user mobility, radio resource optimization, frequency reuse techniques, the adaptive modulation and coding module, and other aspects that are very relevant to the industrial and scientific communities.
Abstract: Long-term evolution (LTE) represents an emerging and promising technology for providing broadband ubiquitous Internet access. For this reason, several research groups are trying to optimize its performance. Unfortunately, at present, to the best of our knowledge, no open-source simulation platforms, which the scientific community can use to evaluate the performance of the entire LTE system, are freely available. The lack of a common reference simulator does not help the work of researchers and poses limitations on the comparison of results claimed by different research groups. To bridge this gap, herein, the open-source framework LTE-Sim is presented to provide a complete performance verification of LTE networks. LTE-Sim has been conceived to simulate uplink and downlink scheduling strategies in multicell/multiuser environments, taking into account user mobility, radio resource optimization, frequency reuse techniques, the adaptive modulation and coding module, and other aspects that are very relevant to the industrial and scientific communities. The effectiveness of the proposed simulator has been tested and verified considering 1) the software scalability test, which analyzes both memory and simulation time requirements; and 2) the performance evaluation of a realistic LTE network providing a comparison among well-known scheduling strategies.

685 citations

Journal ArticleDOI
01 Apr 2004
TL;DR: Westwood+ TCP is friendly towards New Reno TCP and improves fairness in bandwidth allocation whereas Vegas TCP is fair but it is not able to grab its bandwidth share when coexisting with Reno or in the presence of reverse traffic because of its RTT-based congestion detection mechanism.
Abstract: TCP congestion control has been designed to ensure Internet stability along with fair and efficient allocation of the network bandwidth. During the last decade, many congestion control algorithms have been proposed to improve the classic Tahoe/Reno TCP congestion control. This paper aims at evaluating and comparing three control algorithms, which are Westwood+, New Reno and Vegas TCP, using both Ns-2 simulations and live Internet measurements. Simulation scenarios are carefully designed in order to investigate goodput, fairness and friendliness provided by each of the algorithms. Results show that Westwood+ TCP is friendly towards New Reno TCP and improves fairness in bandwidth allocation whereas Vegas TCP is fair but it is not able to grab its bandwidth share when coexisting with Reno or in the presence of reverse traffic because of its RTT-based congestion detection mechanism. Finally results show that Westwood+ remarkably improves utilization of wireless links that are affected by losses not due to congestion.

302 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

6,131 citations

Journal ArticleDOI
TL;DR: The relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber- physical world, are explored and existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development.
Abstract: Fog/edge computing has been proposed to be integrated with Internet of Things (IoT) to enable computing services devices deployed at network edge, aiming to improve the user’s experience and resilience of the services in case of failures. With the advantage of distributed architecture and close to end-users, fog/edge computing can provide faster response and greater quality of service for IoT applications. Thus, fog/edge computing-based IoT becomes future infrastructure on IoT development. To develop fog/edge computing-based IoT infrastructure, the architecture, enabling techniques, and issues related to IoT should be investigated first, and then the integration of fog/edge computing and IoT should be explored. To this end, this paper conducts a comprehensive overview of IoT with respect to system architecture, enabling technologies, security and privacy issues, and present the integration of fog/edge computing and IoT, and applications. Particularly, this paper first explores the relationship between cyber-physical systems and IoT, both of which play important roles in realizing an intelligent cyber-physical world. Then, existing architectures, enabling technologies, and security and privacy issues in IoT are presented to enhance the understanding of the state of the art IoT development. To investigate the fog/edge computing-based IoT, this paper also investigate the relationship between IoT and fog/edge computing, and discuss issues in fog/edge computing-based IoT. Finally, several applications, including the smart grid, smart transportation, and smart cities, are presented to demonstrate how fog/edge computing-based IoT to be implemented in real-world applications.

2,057 citations

Journal ArticleDOI
TL;DR: It is discussed, how blockchain, which is the underlying technology for bitcoin, can be a key enabler to solve many IoT security problems.

1,743 citations

01 Jan 2007
TL;DR: In this paper, the authors provide updates to IEEE 802.16's MIB for the MAC, PHY and asso-ciated management procedures in order to accommodate recent extensions to the standard.
Abstract: This document provides updates to IEEE Std 802.16's MIB for the MAC, PHY and asso- ciated management procedures in order to accommodate recent extensions to the standard.

1,481 citations

Journal ArticleDOI
TL;DR: In this paper, a low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computing offloading.
Abstract: Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost , which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.

1,385 citations