scispace - formally typeset
Search or ask a question
Author

Luigi D. Notarangelo

Bio: Luigi D. Notarangelo is an academic researcher from Harvard University. The author has contributed to research in topics: Medicine & Immunology. The author has an hindex of 54, co-authored 107 publications receiving 18138 citations. Previous affiliations of Luigi D. Notarangelo include National Institutes of Health & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
Paul Bastard1, Paul Bastard2, Paul Bastard3, Lindsey B. Rosen4, Qian Zhang3, Eleftherios Michailidis3, Hans-Heinrich Hoffmann3, Yu Zhang4, Karim Dorgham1, Quentin Philippot2, Quentin Philippot1, Jérémie Rosain2, Jérémie Rosain1, Vivien Béziat2, Vivien Béziat3, Vivien Béziat1, Jeremy Manry2, Jeremy Manry1, Elana Shaw4, Liis Haljasmägi5, Pärt Peterson5, Lazaro Lorenzo2, Lazaro Lorenzo1, Lucy Bizien1, Lucy Bizien2, Sophie Trouillet-Assant6, Kerry Dobbs4, Adriana Almeida de Jesus4, Alexandre Belot6, Anne Kallaste7, Emilie Catherinot, Yacine Tandjaoui-Lambiotte2, Jérémie Le Pen3, Gaspard Kerner2, Gaspard Kerner1, Benedetta Bigio3, Yoann Seeleuthner2, Yoann Seeleuthner1, Rui Yang3, Alexandre Bolze, András N Spaan8, András N Spaan3, Ottavia M. Delmonte4, Michael S. Abers4, Alessandro Aiuti9, Giorgio Casari9, Vito Lampasona9, Lorenzo Piemonti9, Fabio Ciceri9, Kaya Bilguvar10, Richard P. Lifton10, Richard P. Lifton3, Marc Vasse, David M. Smadja1, Mélanie Migaud1, Mélanie Migaud2, Jérôme Hadjadj1, Benjamin Terrier1, Darragh Duffy11, Lluis Quintana-Murci12, Lluis Quintana-Murci11, Diederik van de Beek13, Lucie Roussel14, Donald C. Vinh14, Stuart G. Tangye15, Stuart G. Tangye16, Filomeen Haerynck17, David Dalmau18, Javier Martinez-Picado19, Javier Martinez-Picado20, Petter Brodin21, Petter Brodin22, Michel C. Nussenzweig3, Michel C. Nussenzweig23, Stéphanie Boisson-Dupuis1, Stéphanie Boisson-Dupuis2, Stéphanie Boisson-Dupuis3, Carlos Rodríguez-Gallego, Guillaume Vogt1, Trine H. Mogensen24, Trine H. Mogensen25, Andrew J. Oler4, Jingwen Gu4, Peter D. Burbelo4, Jeffrey I. Cohen4, Andrea Biondi26, Laura Rachele Bettini26, Mariella D'Angiò26, Paolo Bonfanti26, Patrick Rossignol27, Julien Mayaux1, Frédéric Rieux-Laucat1, Eystein S. Husebye28, Eystein S. Husebye29, Eystein S. Husebye30, Francesca Fusco, Matilde Valeria Ursini, Luisa Imberti31, Alessandra Sottini31, Simone Paghera31, Eugenia Quiros-Roldan32, Camillo Rossi, Riccardo Castagnoli33, Daniela Montagna33, Amelia Licari33, Gian Luigi Marseglia33, Xavier Duval, Jade Ghosn1, Hgid Lab4, Covid Clinicians5, Covid-Storm Clinicians§4, CoV-Contact Cohort§1, Amsterdam Umc Covid Biobank2, Amsterdam Umc Covid Biobank3, Amsterdam Umc Covid Biobank1, Covid Human Genetic Effort3, John S. Tsang4, Raphaela Goldbach-Mansky4, Kai Kisand5, Michail S. Lionakis4, Anne Puel1, Anne Puel3, Anne Puel2, Shen-Ying Zhang2, Shen-Ying Zhang1, Shen-Ying Zhang3, Steven M. Holland4, Guy Gorochov1, Emmanuelle Jouanguy1, Emmanuelle Jouanguy2, Emmanuelle Jouanguy3, Charles M. Rice3, Aurélie Cobat1, Aurélie Cobat2, Aurélie Cobat3, Luigi D. Notarangelo4, Laurent Abel1, Laurent Abel2, Laurent Abel3, Helen C. Su4, Jean-Laurent Casanova 
23 Oct 2020-Science
TL;DR: A means by which individuals at highest risk of life-threatening COVID-19 can be identified is identified, and the hypothesis that neutralizing auto-Abs against type I IFNs may underlie critical CO VID-19 is tested.
Abstract: Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.

1,913 citations

Journal ArticleDOI
Qian Zhang1, Paul Bastard2, Paul Bastard3, Zhiyong Liu1  +169 moreInstitutions (34)
23 Oct 2020-Science
TL;DR: The COVID Human Genetic Effort established to test the general hypothesis that life-threatening COVID-19 in some or most patients may be caused by monogenic inborn errors of immunity to SARS-CoV-2 with incomplete or complete penetrance finds an enrichment in variants predicted to be loss-of-function (pLOF), with a minor allele frequency <0.001.
Abstract: Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.

1,659 citations

Journal ArticleDOI
01 Sep 2000-Cell
TL;DR: The phenotype observed in HIGM2 patients (and in AID-/- mice) demonstrates the absolute requirement for AID in several crucial steps of B cell terminal differentiation necessary for efficient antibody responses.

1,551 citations

Journal ArticleDOI
TL;DR: The updated classification of primary immunodeficiencies (PIDs) compiled by the Expert Committee of the International Union of Immunological Societies acts as a current reference of the knowledge of these conditions and is an important aid for the molecular diagnosis of patients with these rare diseases.
Abstract: We report the updated classification of primary immunodeficiency diseases, compiled by the ad hoc Expert Committee of the International Union of Immunological Societies. As compared to the previous edition, more than 15 novel disease entities have been added in the updated version. For each disorders, the key clinical and laboratory features are provided. This updated classification is meant to help in the diagnostic approach to patients with these diseases.

945 citations

Journal ArticleDOI
TL;DR: Gene therapy, combined with reduced-intensity conditioning, is a safe and effective treatment for SCID in patients with ADA deficiency and effective protection against infections and improvement in physical development made a normal lifestyle possible.
Abstract: Background We investigated the long-term outcome of gene therapy for severe combined immunodeficiency (SCID) due to the lack of adenosine deaminase (ADA), a fatal disorder of purine metabolism and immunodeficiency. Methods We infused autologous CD34+ bone marrow cells transduced with a retroviral vector containing the ADA gene into 10 children with SCID due to ADA deficiency who lacked an HLA-identical sibling donor, after nonmyeloablative conditioning with busulfan. Enzyme-replacement therapy was not given after infusion of the cells. Results All patients are alive after a median follow-up of 4.0 years (range, 1.8 to 8.0). Transduced hematopoietic stem cells have stably engrafted and differentiated into myeloid cells containing ADA (mean range at 1 year in bone marrow lineages, 3.5 to 8.9%) and lymphoid cells (mean range in peripheral blood, 52.4 to 88.0%). Eight patients do not require enzyme-replacement therapy, their blood cells continue to express ADA, and they have no signs of defective detoxificati...

936 citations


Cited by
More filters
Journal ArticleDOI
20 Oct 1995-Science
TL;DR: A high-capacity system was developed to monitor the expression of many genes in parallel by means of simultaneous, two-color fluorescence hybridization, which enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA.
Abstract: A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative expression measurements of the corresponding genes. Because of the small format and high density of the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence hybridization.

10,287 citations

Journal ArticleDOI
Luke Jostins1, Stephan Ripke2, Rinse K. Weersma3, Richard H. Duerr4, Dermot P.B. McGovern5, Ken Y. Hui6, James Lee7, L. Philip Schumm8, Yashoda Sharma6, Carl A. Anderson1, Jonah Essers9, Mitja Mitrovic3, Kaida Ning6, Isabelle Cleynen10, Emilie Theatre11, Sarah L. Spain12, Soumya Raychaudhuri9, Philippe Goyette13, Zhi Wei14, Clara Abraham6, Jean-Paul Achkar15, Tariq Ahmad16, Leila Amininejad17, Ashwin N. Ananthakrishnan9, Vibeke Andersen18, Jane M. Andrews19, Leonard Baidoo4, Tobias Balschun20, Peter A. Bampton21, Alain Bitton22, Gabrielle Boucher13, Stephan Brand23, Carsten Büning24, Ariella Cohain25, Sven Cichon26, Mauro D'Amato27, Dirk De Jong3, Kathy L Devaney9, Marla Dubinsky5, Cathryn Edwards28, David Ellinghaus20, Lynnette R. Ferguson29, Denis Franchimont17, Karin Fransen3, Richard B. Gearry30, Michel Georges11, Christian Gieger, Jürgen Glas22, Talin Haritunians5, Ailsa Hart31, Christopher J. Hawkey32, Matija Hedl6, Xinli Hu9, Tom H. Karlsen33, Limas Kupčinskas34, Subra Kugathasan35, Anna Latiano36, Debby Laukens37, Ian C. Lawrance38, Charlie W. Lees39, Edouard Louis11, Gillian Mahy40, John C. Mansfield41, Angharad R. Morgan29, Craig Mowat42, William G. Newman43, Orazio Palmieri36, Cyriel Y. Ponsioen44, Uroš Potočnik45, Natalie J. Prescott6, Miguel Regueiro4, Jerome I. Rotter5, Richard K Russell46, Jeremy D. Sanderson47, Miquel Sans, Jack Satsangi39, Stefan Schreiber20, Lisa A. Simms48, Jurgita Sventoraityte34, Stephan R. Targan, Kent D. Taylor5, Mark Tremelling49, Hein W. Verspaget50, Martine De Vos37, Cisca Wijmenga3, David C. Wilson39, Juliane Winkelmann51, Ramnik J. Xavier9, Sebastian Zeissig20, Bin Zhang25, Clarence K. Zhang6, Hongyu Zhao6, Mark S. Silverberg52, Vito Annese, Hakon Hakonarson53, Steven R. Brant54, Graham L. Radford-Smith55, Christopher G. Mathew12, John D. Rioux13, Eric E. Schadt25, Mark J. Daly2, Andre Franke20, Miles Parkes7, Severine Vermeire10, Jeffrey C. Barrett1, Judy H. Cho6 
Wellcome Trust Sanger Institute1, Broad Institute2, University of Groningen3, University of Pittsburgh4, Cedars-Sinai Medical Center5, Yale University6, University of Cambridge7, University of Chicago8, Harvard University9, Katholieke Universiteit Leuven10, University of Liège11, King's College London12, Université de Montréal13, New Jersey Institute of Technology14, Cleveland Clinic15, Peninsula College of Medicine and Dentistry16, Université libre de Bruxelles17, Aarhus University18, University of Adelaide19, University of Kiel20, Flinders University21, McGill University22, Ludwig Maximilian University of Munich23, Charité24, Icahn School of Medicine at Mount Sinai25, University of Bonn26, Karolinska Institutet27, Torbay Hospital28, University of Auckland29, Christchurch Hospital30, Imperial College London31, Queen's University32, University of Oslo33, Lithuanian University of Health Sciences34, Emory University35, Casa Sollievo della Sofferenza36, Ghent University37, University of Western Australia38, University of Edinburgh39, Queensland Health40, Newcastle University41, University of Dundee42, University of Manchester43, University of Amsterdam44, University of Maribor45, Royal Hospital for Sick Children46, Guy's and St Thomas' NHS Foundation Trust47, QIMR Berghofer Medical Research Institute48, Norfolk and Norwich University Hospital49, Leiden University50, Technische Universität München51, University of Toronto52, University of Pennsylvania53, Johns Hopkins University54, University of Queensland55
01 Nov 2012-Nature
TL;DR: A meta-analysis of Crohn’s disease and ulcerative colitis genome-wide association scans is undertaken, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls.
Abstract: Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations. Genome-wide association studies and subsequent meta-analyses of these two diseases as separate phenotypes have implicated previously unsuspected mechanisms, such as autophagy, in their pathogenesis and showed that some IBD loci are shared with other inflammatory diseases. Here we expand on the knowledge of relevant pathways by undertaking a meta-analysis of Crohn's disease and ulcerative colitis genome-wide association scans, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci, that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional (consistently favouring one allele over the course of human history) and balancing (favouring the retention of both alleles within populations) selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe considerable overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.

4,094 citations

Journal ArticleDOI
01 Sep 2000-Cell
TL;DR: Results suggest that AID may be involved in regulation or catalysis of the DNA modification step of both class switching and somatic hypermutation in CH12F3-2 B lymphoma.

3,288 citations

Journal ArticleDOI
TL;DR: This review summarizes the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
Abstract: CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.

2,978 citations

Journal ArticleDOI
28 Apr 2000-Science
TL;DR: A gene therapy trial for SCID-X1 was initiated, based on the use of complementary DNA containing a defective gammac Moloney retrovirus-derived vector and ex vivo infection of CD34+ cells, which provided full correction of disease phenotype and clinical benefit.
Abstract: Severe combined immunodeficiency-X1 (SCID-X1) is an X-linked inherited disorder characterized by an early block in T and natural killer (NK) lymphocyte differentiation. This block is caused by mutations of the gene encoding the gammac cytokine receptor subunit of interleukin-2, -4, -7, -9, and -15 receptors, which participates in the delivery of growth, survival, and differentiation signals to early lymphoid progenitors. After preclinical studies, a gene therapy trial for SCID-X1 was initiated, based on the use of complementary DNA containing a defective gammac Moloney retrovirus-derived vector and ex vivo infection of CD34+ cells. After a 10-month follow-up period, gammac transgene-expressing T and NK cells were detected in two patients. T, B, and NK cell counts and function, including antigen-specific responses, were comparable to those of age-matched controls. Thus, gene therapy was able to provide full correction of disease phenotype and, hence, clinical benefit.

2,639 citations