scispace - formally typeset
Search or ask a question
Author

Luigi Di Sarno

Bio: Luigi Di Sarno is an academic researcher from University of Liverpool. The author has contributed to research in topics: Earthquake engineering & Earthquake shaking table. The author has an hindex of 14, co-authored 64 publications receiving 818 citations. Previous affiliations of Luigi Di Sarno include University of Strathclyde & University of Naples Federico II.


Papers
More filters
Book
01 Jan 2008
TL;DR: In this article, the authors proposed a framework for detecting and analyzing earthquakes based on the properties of the ground motion and the earthquake response. But they did not consider the impact of the earthquake on buildings and lifelines.
Abstract: About the Authors. Foreword. Preface and Acknowledgements. Introduction. List of Abbreviations. List of Symbols. 1. Earthquake Characteristics. 1.1 Causes of Earthquakes. 1.1.1 Plate Tectonics Theory. 1.1.2 Faulting. 1.1.3 Seismic Waves. 1.2 Measuring Earthquakes. 1.2.1 Intensity. 1.2.2 Magnitude. 1.2.3 Intensity-Magnitude Relationships. 1.3 Source-to-Site Effects. 1.3.1 Directional Effects. 1.3.2 Site Effects. 1.3.3 Dispersion and Incoherence. 1.4 Effects of Earthquakes. 1.4.1 Damage to Buildings and Lifelines. 1.4.2 Effects on the Ground. 1.4.3 Human and Financial Losses. References. 2. Response of Structures. 2.1 General. 2.2 Conceptual Framework. 2.2.1 Definitions. 2.2.2 Strength-versus Ductility-Based Response. 2.2.3 Member-versus System-Level Consideration. 2.2.4 Nature of Seismic Effects. 2.2.5 Fundamental Response Quantities. 2.2.6 Social-Economic Limit States. 2.3 Structural Response Characteristics. 2.3.1 Stiffness. 2.3.2 Strength. 2.3.3 Ductility. 2.3.4 Overstrength. 2.3.5 Damping. 2.3.6 Relationship between Strength, Overstrength and Ductility: Force Reduction Factor 'Supply'. References. 3. Earthquake Input Motion. 3.1 General. 3.2 Earthquake Occurrence and Return Period. 3.3 Ground-Motion Models (Attenuation Relationships). 3.3.1 Features of Strong-Motion Data for Attenuation Relationships. 3.3.2 Attenuation Relationship for Europe. 3.3.3 Attenuation Relationship for Japan. 3.3.4 Attenuation Relationships for North America. 3.3.5 Worldwide Attenuation Relationships. 3.4 Earthquake Spectra. 3.4.1 Factors Influencing Response Spectra. 3.4.2 Elastic and Inelastic Spectra. 3.4.3 Simplified Spectra. 3.4.4 Force Reduction Factors (Demand). 3.4.5 Design Spectra. 3.4.6 Vertical Component of Ground Motion. 3.4.7 Vertical Motion Spectra. 3.5 Earthquake Records. 3.5.1 Natural Records. 3.5.2 Artificial Records. 3.5.3 Records Based on Mathematical Formulations. 3.5.4 Scaling of Earthquake Records. 3.6 Duration and Number of Cycles of Earthquake Ground Motions. 3.7 Use of Earthquake Databases. 3.8 Software for Deriving Spectra and Generation of Ground-Motion Records. 3.8.1 Derivation of Earthquake Spectra. 3.8.2 Generation of Ground-Motion Records. References. 4. Response Evaluation. 4.1 General. 4.2 Conceptual Framework. 4.3 Ground Motion and Load Modelling. 4.4 Seismic Load Combinations. 4.5 Structural Modelling. 4.5.1 Materials. 4.5.2 Sections. 4.5.3 Components and Systems for Structural Modelling. 4.5.4 Masses. 4.6 Methods of Analysis. 4.6.1 Dynamic Analysis. 4.6.2 Static Analysis. 4.6.3 Simplified Code Method. 4.7 Performance Levels and Objectives. 4.8 Output for Assessment. 4.8.1 Actions. 4.8.2 Deformations. 4.9 Concluding Remarks. References. Appendix A - Structural Configurations and Systems for Effective Earthquake Resistance. Appendix B - Damage to Structures. Index.

322 citations

Journal ArticleDOI
TL;DR: The Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR) highlights the importance of scientific research, supporting the availability and application of science and technology to decision-making in disaster risk reduction.
Abstract: The Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR) highlights the importance of scientific research, supporting the ‘availability and application of science and technology to decision making’ in disaster risk reduction (DRR). Science and technology can play a crucial role in the world’s ability to reduce casualties, physical damage, and interruption to critical infrastructure due to natural hazards and their complex interactions. The SFDRR encourages better access to technological innovations combined with increased DRR investments in developing cost-effective approaches and tackling global challenges. To this aim, it is essential to link multi- and interdisciplinary research and technological innovations with policy and engineering/DRR practice. To share knowledge and promote discussion on recent advances, challenges, and future directions on ‘Innovations in Earthquake Risk Reduction for Resilience’, a group of experts from academia and industry met in London, UK, in July 2019. The workshop focused on both cutting-edge ‘soft’ (e.g., novel modelling methods/frameworks, early warning systems, disaster financing and parametric insurance) and ‘hard’ (e.g., novel structural systems/devices for new structures and retrofitting of existing structures, sensors) risk-reduction strategies for the enhancement of structural and infrastructural earthquake safety and resilience. The workshop highlighted emerging trends and lessons from recent earthquake events and pinpointed critical issues for future research and policy interventions. This paper summarises some of the key aspects identified and discussed during the workshop to inform other researchers worldwide and extend the conversation to a broader audience, with the ultimate aim of driving change in how seismic risk is quantified and mitigated.

63 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental model consisting of an oscillator connected to a single or a group of piles embedded in a bi-layer deposit was used to study the modal dynamic response of the soil-pile-structure system in terms of period elongation and system damping ratio.
Abstract: Summary An effective way to study the complex seismic soil-structure interaction phenomena is to investigate the response of physical scaled models in 1-g or n-g laboratory devices. The outcomes of an extensive experimental campaign carried out on scaled models by means of the shaking table of the Bristol Laboratory for Advanced Dynamics Engineering, University of Bristol, UK, are discussed in the present paper. The experimental model comprises an oscillator connected to a single or a group of piles embedded in a bi-layer deposit. Different pile head conditions, that is free head and fixed head, several dynamic properties of the structure, including different masses at the top of the single degree of freedom system, excited by various input motions, e.g. white noise, sinedwells and natural earthquake strong motions recorded in Italy, have been tested. In the present work, the modal dynamic response of the soil–pile–structure system is assessed in terms of period elongation and system damping ratio. Furthermore, the effects of oscillator mass and pile head conditions on soil–pile response have been highlighted, when the harmonic input motions are considered. Copyright © 2015 John Wiley & Sons, Ltd.

62 citations

Book
28 Sep 2015
TL;DR: Elnashai as discussed by the authors describes the process of centralizing, or creating a new center of earthquake engineering: From Source to Fragility by Amr S. Elnashi;Luigi Di Sarno personality.
Abstract: Hurricane, despite external influences, is ambiguous. The gravitational paradox, at first glance, gives rise to a temple complex dedicated to the god Enki dilmunskomu ,. Loss reflects an experimental liberalism, it describes the process of centralizing, or create a new center of Fundamentals of Earthquake Engineering: From Source to Fragility by Amr S. Elnashai;Luigi Di Sarno personality. The rule of alternation ends imperative mathematical analysis.

48 citations


Cited by
More filters
Journal ArticleDOI

1,604 citations

01 Jan 1971
TL;DR: In this article, the authors deal with the dynamic ASPECTS of the sub-subject: MATHEMATICAL ANALYSIS of systems SUBJECTED to INDEPENDENT VIBRATIONS by means of MATHEATICAL MODELS.
Abstract: PART 1 DEALS WITH THE DYNAMIC ASPECTS OF THE SUBJECT: MATHEMATICAL ANALYSIS OF SYSTEMS SUBJECTED TO INDEPENDENT VIBRATIONS BY MEANS OF MATHEMATICAL MODELS. THE ANALYTICAL SYSTEMS USED ARE NON-LINEAR SYSTEMS, HYDRODYNAMICS AND NUMERICAL METHODS. PART 2 EXAMINES SEISMIC MOVEMENTS, THE DYNAMIC BEHAVIOUR OF STRUCTURES AND THE BASIC CONCEPTS OF THE SEISMIC DESIGN OF STRUCTURES.

675 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the effect of ground motion duration on the collapse of reinforced concrete structures by conducting incremental dynamic analysis on nonlinear multiple-degree-of-freedom models of concrete frame buildings with different structural properties.

200 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate a large geodetic data set of interferometric synthetic aperture radar (InSAR) and GPS measurements to determine the source parameters for the three main shocks of the 2016 Central Italy earthquake sequence on 24 August and 26 and 30 October.
Abstract: We investigate a large geodetic data set of interferometric synthetic aperture radar (InSAR) and GPS measurements to determine the source parameters for the three main shocks of the 2016 Central Italy earthquake sequence on 24 August and 26 and 30 October (Mw 6.1, 5.9, and 6.5, respectively). Our preferred model is consistent with the activation of four main coseismic asperities belonging to the SW dipping normal fault system associated with the Mount Gorzano-Mount Vettore-Mount Bove alignment. Additional slip, equivalent to a Mw ~ 6.1–6.2 earthquake, on a secondary (1) NE dipping antithetic fault and/or (2) on a WNW dipping low-angle fault in the hanging wall of the main system is required to better reproduce the complex deformation pattern associated with the greatest seismic event (the Mw 6.5 earthquake). The recognition of ancillary faults involved in the sequence suggests a complex interaction in the activated crustal volume between the main normal faults and the secondary structures and a partitioning of strain release.

160 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical fragility and vulnerability model covering the most common building classes at the global scale was developed to cover the majority of combinations of construction material, height, lateral load resisting system and seismic design level, which was used for the assessment of economic losses due to earthquakes as part of the global seismic risk model supported by the Global Earthquake Model Foundation.
Abstract: Seismic fragility and vulnerability assessment is an essential step in the evaluation of probabilistic seismic risk. Ideally, models developed and calibrated for the building portfolio of interest would be readily available. However, the lack of damage data and insufficient analytical studies lead to a paucity of fragility and vulnerability models, in particular in the developing world. This study describes the development of an analytical fragility and vulnerability model covering the most common building classes at the global scale. Nearly five hundred functions were developed to cover the majority of combinations of construction material, height, lateral load resisting system and seismic design level. The fragility and vulnerability were derived using nonlinear time-history analyses on equivalent single-degree-of-freedom oscillators and a large set of ground motion records representing several tectonic environments. The resulting fragility and vulnerability functions were validated through a series of tests which include the calculation of the average annual loss ratio for a number of locations, the comparison of probabilities of collapse across all building classes, and the repetition of past seismic events. The set of vulnerability functions was used for the assessment of economic losses due to earthquakes as part of the global seismic risk model supported by the Global Earthquake Model Foundation.

97 citations