scispace - formally typeset
Search or ask a question
Author

Luigi Warren

Bio: Luigi Warren is an academic researcher from Children's Medical Center of Dallas. The author has contributed to research in topics: Induced pluripotent stem cell & Reprogramming. The author has an hindex of 11, co-authored 19 publications receiving 3473 citations. Previous affiliations of Luigi Warren include California Institute of Technology & Boston Children's Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols and represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine.

2,627 citations

Journal ArticleDOI
TL;DR: A systematic, quantitative population analysis of transcription factor expression within developmental progenitors, made possible by a microfluidic chip-based “digital RT-PCR” assay that can count template molecules in cDNA samples prepared from single cells is reported, which demonstrates caveats of normalizing expression data to endogenous controls and underscores the need to put gene measurement on an absolute, copy-per-cell basis.
Abstract: We report here a systematic, quantitative population analysis of transcription factor expression within developmental progenitors, made possible by a microfluidic chip-based "digital RT-PCR" assay that can count template molecules in cDNA samples prepared from single cells. In a survey encompassing five classes of early hematopoietic precursor, we found markedly heterogeneous expression of the transcription factor PU.1 in hematopoietic stem cells and divergent patterns of PU.1 expression within flk2- and flk2+ common myeloid progenitors. The survey also revealed significant differences in the level of the housekeeping transcript GAPDH across the surveyed populations, which demonstrates caveats of normalizing expression data to endogenous controls and underscores the need to put gene measurement on an absolute, copy-per-cell basis.

448 citations

Journal ArticleDOI
TL;DR: In this paper, a feeder-free, xeno-free protocol for mRNA-based iPSC derivation is presented. But, this protocol requires the use of feeder cells that add complexity and variability to the procedure while introducing a route for contamination with non-human-derived biological material.
Abstract: The therapeutic promise of induced pluripotent stem cells (iPSCs) has spurred efforts to circumvent genome alteration when reprogramming somatic cells to pluripotency. Approaches based on episomal DNA, Sendai virus, and messenger RNA (mRNA) can generate "footprint-free" iPSCs with efficiencies equaling or surpassing those attained with integrating viral vectors. The mRNA method uniquely affords unprecedented control over reprogramming factor (RF) expression while obviating a cleanup phase to purge residual traces of vector. Currently, mRNA-based reprogramming is relatively laborious due to the need to transfect daily for ~2 weeks to induce pluripotency, and requires the use of feeder cells that add complexity and variability to the procedure while introducing a route for contamination with non-human-derived biological material. We accelerated the mRNA reprogramming process through stepwise optimization of the RF cocktail and leveraged these kinetic gains to establish a feeder-free, xeno-free protocol which slashes the time, cost and effort involved in iPSC derivation.

151 citations

Patent
15 Apr 2011
TL;DR: In this paper, the authors describe methods, compositions, and kits comprising synthetic, modified RNAs for changing the phenotype of a cell or cells, such as expressing a polypeptide or altering the developmental potential.
Abstract: Described herein are synthetic, modified RNAs for changing the phenotype of a cell, such as expressing a polypeptide or altering the developmental potential. Accordingly, provided herein are compositions, methods, and kits comprising synthetic, modified RNAs for changing the phenotype of a cell or cells. These methods, compositions, and kits comprising synthetic, modified RNAs can be used either to express a desired protein in a cell or tissue, or to change the differentiated phenotype of a cell to that of another, desired cell type.

115 citations

Journal ArticleDOI
TL;DR: With age, HSCs show an increased propensity to differentiate towards myeloid rather than lymphoid lineages, which may contribute to the decline in lymphopoiesis that attends aging.

111 citations


Cited by
More filters
Journal ArticleDOI
17 Oct 2008-Cell
TL;DR: Stochastic gene expression has important consequences for cellular function, being beneficial in some contexts and harmful in others, including the stress response, metabolism, development, the cell cycle, circadian rhythms, and aging.

2,471 citations

Journal ArticleDOI
09 Apr 2009-Nature
TL;DR: It is shown that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells, and subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.
Abstract: The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny, and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably, subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing, CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.

2,261 citations

Journal ArticleDOI
TL;DR: A high-throughput droplet digital PCR system that enables processing of ∼2 million PCR reactions using conventional TaqMan assays with a 96-well plate workflow is described that will allow researchers to explore complex genetic landscapes, discover and validate new disease associations, and define a new era of molecular diagnostics.
Abstract: Digital PCR enables the absolute quantitation of nucleic acids in a sample. The lack of scalable and practical technologies for digital PCR implementation has hampered the widespread adoption of this inherently powerful technique. Here we describe a high-throughput droplet digital PCR (ddPCR) system that enables processing of ∼2 million PCR reactions using conventional TaqMan assays with a 96-well plate workflow. Three applications demonstrate that the massive partitioning afforded by our ddPCR system provides orders of magnitude more precision and sensitivity than real-time PCR. First, we show the accurate measurement of germline copy number variation. Second, for rare alleles, we show sensitive detection of mutant DNA in a 100 000-fold excess of wildtype background. Third, we demonstrate absolute quantitation of circulating fetal and maternal DNA from cell-free plasma. We anticipate this ddPCR system will allow researchers to explore complex genetic landscapes, discover and validate new disease associat...

2,203 citations

Journal ArticleDOI
TL;DR: A simple method is reported, using p53 suppression and nontransforming L-Myc, to generate human induced pluripotent stem cells (iPSCs) with episomal plasmid vectors, which may provide iPSCs suitable for autologous and allologous stem-cell therapy in the future.
Abstract: Human induced pluripotent stem cells are generated with episomal plasmid vectors at increased efficiency using non-transforming L-Myc and knockdown of p53 Also in this issue, Chen et al report defined conditions for human cell reprogramming and culture

1,712 citations

PatentDOI
TL;DR: In this article, a method for probing a target sequence of messenger ribonucleic acid molecules (mRNA's) in a fixed, permeabilized cell, including at least 30 non- overlapping probe binding regions of 15-100 nucleotides, was proposed.
Abstract: A method for probing a target sequence of messenger ribonucleic acid molecules (mRNA's) in a fixed, permeabilized cell, said target sequence including at least 30 non- overlapping probe binding regions of 15-100 nucleotides, comprising immersing said cell in an excess of at least 30 nucleic acid hybridization probes, each singly labeled with the same fluorescent label and each containing a nucleic acid sequence that is complementary to a different probe binding region of said target sequence; washing said fixed cell to remove unbound probes; and detecting fluorescence from said probes.

1,480 citations