scispace - formally typeset
Search or ask a question
Author

Luís Borges-Araújo

Other affiliations: Universidade Nova de Lisboa
Bio: Luís Borges-Araújo is an academic researcher from Instituto Superior Técnico. The author has contributed to research in topics: Phosphatidylinositol 4,5-bisphosphate & Actin. The author has an hindex of 1, co-authored 5 publications receiving 4 citations. Previous affiliations of Luís Borges-Araújo include Universidade Nova de Lisboa.

Papers
More filters
Journal ArticleDOI
TL;DR: The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.
Abstract: Phosphatidylinositol 4,5- bisphosphate (PI(4,5)P2) is a minor but ubiquitous component of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular complex biophysical properties, it stands out from its neighboring lipids as one of the most important regulators of membrane-associated signaling events. Despite its very low steady-state concentration, PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane. These pools are crucial for the recruitment, activation, and organization of signaling proteins and consequent regulation of downstream signaling. The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.

9 citations

Posted ContentDOI
11 Jun 2021-ChemRxiv
TL;DR: The models developed improve upon the conformational dynamics of phosphoinositides in the Martini force field and provide stable topologies at typical Martini timesteps, allowing for more accurate reproduction of the behavior seen in both atomistic simulations and experimental studies.
Abstract: Phosphoinositides are a family of membrane phospholipids that play crucial roles in membrane regulatory events. As such, these lipids are often a key part of molecular dynamics simulation studies of biological membranes, in particular of those employing coarse-grain models because of the potential long times and sizes of the involved membrane processes. Version 3 of the widely used Martini coarse grain force field has been recently published, greatly refining many aspects of biomolecular interactions. In order to properly use it for lipid membrane simulations with phosphoinositides, we put forth the Martini 3-specific parameterization of inositol, phosphatidylinositol, the seven physiologically relevant phosphorylated derivatives of phosphatidylinositol. Compared to parameterizations for earlier Martini versions, focus was put on a more accurate reproduction of the behavior seen in both atomistic simulations and experimental studies, including the signaling relevant phosphoinositide interaction with divalent cations. The models we develop improve upon the conformational dynamics of phosphoinositides in the Martini force field and provide stable topologies at typical Martini timesteps. They are able to reproduce experimentally known protein-binding poses as well as phosphoinositide aggregation tendencies. The latter were tested both in the presence and absence of calcium, and include correct behavior of PI(4,5)P2 calcium-induced clusters, which can be of relevance for regulation.

8 citations

DOI
29 Nov 2021
TL;DR: In this paper, the impact of acyl-chain structure on the biophysical properties of cation-induced PI(4,5)P2 nanodomains was investigated.
Abstract: Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) plays a critical role in the regulation of various plasma membrane processes and signaling pathways in eukaryotes. A significant amount of cellular resources are spent on maintaining the dominant 1-stearoyl-2-arachidonyl PI(4,5)P2 acyl-chain composition, while less abundant and more saturated species become more prevalent in response to specific stimuli, stress or aging. Here, we report the impact of acyl-chain structure on the biophysical properties of cation-induced PI(4,5)P2 nanodomains. PI(4,5)P2 species with increasing levels of acyl-chain saturation cluster in progressively more ordered nanodomains, culminating in the formation of gel-like nanodomains for fully saturated species. The formation of these gel-like domains was largely abrogated in the presence of 1-stearoyl-2-arachidonyl PI(4,5)P2. This is, to the best of our knowledge, the first report of the impact of PI(4,5)P2 acyl-chain composition on cation-dependent nanodomain ordering, and provides important clues to the motives behind the enrichment of PI(4,5)P2 with polyunsaturated acyl-chains. We also show how Ca2+-induced PI(4,5)P2 nanodomains are able to generate local negative curvature, a phenomenon likely to play a role in membrane remodeling events. Phosphatidylinositol-4,5-bisphosphates are involved in membrane regulation and signalling in eukaryotes, with the distribution of acyl chains changing in response to stimuli. Here, molecular dynamics simulations and fluorescence spectroscopy experiments show that increasing acyl chain saturation increases the ordering of lipid nanodomains in artificial membranes.

3 citations

Journal ArticleDOI
TL;DR: Forster resonance energy transfer (FRET) was used to quantitatively assess the extent of PI(4,5)P2 confinement within the plasma membrane in HeLa cells as discussed by the authors.
Abstract: Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential plasma membrane component involved in several cellular functions, including membrane trafficking and cytoskeleton organization. This function multiplicity is partially achieved through a dynamic spatiotemporal organization of PI(4,5)P2 within the membrane. Here, we use a Forster resonance energy transfer (FRET) approach to quantitatively assess the extent of PI(4,5)P2 confinement within the plasma membrane. This methodology relies on the rigorous evaluation of the dependence of absolute FRET efficiencies between pleckstrin homology domains (PHPLCδ) fused with fluorescent proteins and their average fluorescence intensity at the membrane. PI(4,5)P2 is found to be significantly compartmentalized at the plasma membrane of HeLa cells, and these clusters are not cholesterol-dependent, suggesting that membrane rafts are not involved in the formation of these nanodomains. On the other hand, upon inhibition of actin polymerization, compartmentalization of PI(4,5)P2 is almost entirely eliminated, showing that the cytoskeleton network is the critical component responsible for the formation of nanoscale PI(4,5)P2 domains in HeLa cells.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Martini model as mentioned in this paper is a coarse-grained force field for molecular dynamics simulations, originally developed for lipid-based systems by the groups of Marrink and Tieleman, has over the years been extended as a community effort to the current level of a general-purpose force field.
Abstract: The Martini model, a coarse‐grained force field for molecular dynamics simulations, has been around for nearly two decades. Originally developed for lipid‐based systems by the groups of Marrink and Tieleman, the Martini model has over the years been extended as a community effort to the current level of a general‐purpose force field. Apart from the obvious benefit of a reduction in computational cost, the popularity of the model is largely due to the systematic yet intuitive building‐block approach that underlies the model, as well as the open nature of the development and its continuous validation. The easy implementation in the widely used Gromacs software suite has also been instrumental. Since its conception in 2002, the Martini model underwent a gradual refinement of the bead interactions and a widening scope of applications. In this review, we look back at this development, culminating with the release of the Martini 3 version in 2021. The power of the model is illustrated with key examples of recent important findings in biological and material sciences enabled with Martini, as well as examples from areas where coarse‐grained resolution is essential, namely high‐throughput applications, systems with large complexity, and simulations approaching the scale of whole cells.

35 citations

Journal ArticleDOI
TL;DR: Antifungal peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells as mentioned in this paper, which can be classified into three classes: rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death and autophagy.
Abstract: The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.

31 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that lipids regulate the signaling efficacy and selectivity of the G protein-coupled receptor GHSR through specific interactions and bulk effects, and observe PIP2 and GM3 induced shifts of the conformational equilibrium of gHSR away from its inactive state.
Abstract: The membrane is an integral component of the G protein-coupled receptor signaling machinery. Here we demonstrate that lipids regulate the signaling efficacy and selectivity of the ghrelin receptor GHSR through specific interactions and bulk effects. We find that PIP2 shifts the conformational equilibrium of GHSR away from its inactive state, favoring basal and agonist-induced G protein activation. This occurs because of a preferential binding of PIP2 to specific intracellular sites in the receptor active state. Another lipid, GM3, also binds GHSR and favors G protein activation, but mostly in a ghrelin-dependent manner. Finally, we find that not only selective interactions but also the thickness of the bilayer reshapes the conformational repertoire of GHSR, with direct consequences on G protein selectivity. Taken together, this data illuminates the multifaceted role of the membrane components as allosteric modulators of how ghrelin signal could be propagated. The membrane is an integral component of the G protein-coupled receptor signaling machinery. Here authors demonstrate that lipids regulate the signaling efficacy and selectivity of the ghrelin receptor GHSR through specific interactions and bulk effects and observe PIP2 and GM3 induced shifts of the conformational equilibrium of GHSR away from its inactive state.

25 citations

Journal ArticleDOI
TL;DR: Pulmonary surfactant is a mixture of lipids and proteins, consisting of 90% phospholipid, and 10% protein by weight, found predominantly in pulmonary alveoli of vertebrate lungs as mentioned in this paper .
Abstract: Pulmonary surfactant is a mixture of lipids and proteins, consisting of 90% phospholipid, and 10% protein by weight, found predominantly in pulmonary alveoli of vertebrate lungs. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), are present within the alveoli at very high concentrations, and exert anti-inflammatory effects by regulating multiple Toll like receptors (TLR2/1, TLR4, and TLR2/6) by antagonizing cognate ligand-dependent activation. POPG also attenuates LPS-induced lung injury in vivo. In addition, these lipids bind directly to RSV and influenza A viruses (IAVs) and block interaction between host cells and virions, and thereby prevent viral replication in vitro. POPG and PI also inhibit RSV and IAV infection in vivo, in mice and ferrets. The lipids markedly inhibit SARS-CoV-2 infection in vitro. These findings suggest that both POPG and PI have strong potential to be applied as both prophylaxis and post-infection treatments for problematic respiratory viral infections.

12 citations

Journal ArticleDOI
01 Apr 2022-Viruses
TL;DR: All SARS-CoV-2 variants that have been recognized as being highly transmissible, such as the kappa, delta and omicron (o) variants, which display an enhanced electropositive character in their RBDs associated with a higher number of lysine- or arginine-generating point mutations, could contribute to their spreading capacity.
Abstract: The spread of SARS-CoV-2 variants in the population depends on their ability to anchor the ACE2 receptor in the host cells. Differences in the electrostatic potentials of the spike protein RBD (electropositive/basic) and ACE2 receptor (electronegative/acidic) play a key role in both the rapprochement and the recognition of the coronavirus by the cell receptors. Accordingly, point mutations that result in an increase in electropositively charged residues, e.g., arginine and lysine, especially in the RBD of spike proteins in the SARS-CoV-2 variants, could contribute to their spreading capacity by favoring their recognition by the electronegatively charged ACE2 receptors. All SARS-CoV-2 variants that have been recognized as being highly transmissible, such as the kappa (κ), delta (δ) and omicron (o) variants, which display an enhanced electropositive character in their RBDs associated with a higher number of lysine- or arginine-generating point mutations. Lysine and arginine residues also participate in the enhanced RBD–ACE2 binding affinity of the omicron variant, by creating additional salt bridges with aspartic and glutamic acid residues from ACE2. However, the effects of lysine- and arginine-generating point mutations on infectivity is more contrasted, since the overall binding affinity of omicron RBD for ACE2 apparently results from some epistasis among the whole set of point mutations.

8 citations