scispace - formally typeset
Search or ask a question
Author

Luis F. Ochoa

Bio: Luis F. Ochoa is an academic researcher from University of Melbourne. The author has contributed to research in topics: Distributed generation & Wind power. The author has an hindex of 40, co-authored 215 publications receiving 6633 citations. Previous affiliations of Luis F. Ochoa include University of Manchester & Sao Paulo State University.


Papers
More filters
Journal ArticleDOI
24 Jul 2011
TL;DR: In this paper, a multi-period AC optimal power flow (OPF) is used to determine the optimal accommodation of (renewable) distributed generation in a way that minimizes the system energy losses.
Abstract: The problem of minimizing losses in distribution networks has traditionally been investigated using a single, deterministic demand level. This has proved to be effective since most approaches are generally able to also result in minimum overall energy losses. However, the increasing penetration of (firm and variable) distributed generation (DG) raises concerns on the actual benefits of loss minimization studies that are limited to a single demand/generation scenario. Here, a multiperiod AC optimal power flow (OPF) is used to determine the optimal accommodation of (renewable) DG in a way that minimizes the system energy losses. In addition, control schemes expected to be part of the future Smart Grid, such as coordinated voltage control and dispatchable DG power factor, are embedded in the OPF formulation to explore the extra loss reduction benefits that can be harnessed with such technologies. The trade-off between energy losses and more generation capacity is also investigated. The methodology is applied to a generic U.K. distribution network and results demonstrate the significant impact that considering time-varying characteristics has on the energy loss minimization problem and highlight the gains that the flexibility provided by innovative control strategies can have on both loss minimization and generation capacity.

462 citations

Journal ArticleDOI
TL;DR: For nearly 20 years, the Test Feeder Working Group of the Distribution System Analysis Subcommittee has been developing openly available distribution test feeders for use by researchers as discussed by the authors, providing models of distribution systems that reflect the wide diversity in design and their various analytic challenges.
Abstract: For nearly 20 years, the Test Feeder Working Group of the Distribution System Analysis Subcommittee has been developing openly available distribution test feeders for use by researchers. The purpose of these test feeders is to provide models of distribution systems that reflect the wide diversity in design and their various analytic challenges. Because of their utility and accessibility, the test feeders have been used for a wide range of research, some of which has been outside the original scope of intended uses. This paper provides an overview of the existing distribution feeder models and clarifies the specific analytic challenges that they were originally designed to examine. Additionally, this paper will provide guidance on which feeders are best suited for various types of analysis. The purpose of this paper is to provide the original intent of the Working Group and to provide the information necessary so that researchers may make an informed decision on which of the test feeders are most appropriate for their work.

412 citations

Journal ArticleDOI
25 Jul 2010
TL;DR: In this paper, the authors proposed a multi-period AC optimal power flow (OPF)-based technique for evaluating the maximum capacity of new variable distributed generation able to be connected to a distribution network when ANM control strategies are in place.
Abstract: Increasing connection of variable distributed generation, like wind power, to distribution networks requires new control strategies to provide greater flexibility and use of existing network assets. Active network management (ANM) will play a major role in this but there is a continuing need to demonstrate the benefit in facilitating connection of new generation without the need for traditional reinforcements. This paper proposes a multi-period AC optimal power flow (OPF)-based technique for evaluating the maximum capacity of new variable distributed generation able to be connected to a distribution network when ANM control strategies are in place. The ANM schemes embedded into the OPF include coordinated voltage control, adaptive power factor and energy curtailment. A generic U.K. medium voltage distribution network is analyzed using coincident demand and wind availability data derived from hourly time-series. Results clearly show that very high penetration levels of new variable generation capacity can be achieved by considering ANM strategies compared to the widely used passive operation (i.e., "fit and forget"). The effects on network losses are also discussed.

409 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a multiobjective performance index for distribution networks with distributed generation, which considers a wide range of technical issues and is extensively located and sized within the IEEE-34 test feeder.
Abstract: Evaluating the technical impacts associated with connecting distributed generation to distribution networks is a complex activity requiring a wide range of network operational and security effects to be qualified and quantified. One means of dealing with such complexity is through the use of indices that indicate the benefit or otherwise of connections at a given location and which could be used to shape the nature of the contract between the utility and distributed generator. This paper presents a multiobjective performance index for distribution networks with distributed generation which considers a wide range of technical issues. Distributed generation is extensively located and sized within the IEEE-34 test feeder, wherein the multiobjective performance index is computed for each configuration. The results are presented and discussed.

390 citations

Journal ArticleDOI
TL;DR: A critical review of the work in this field can be found in this paper, highlighting the barriers to implementation of the advanced techniques and highlighting why network operators have been slow to pick up on the research to date.
Abstract: It is difficult to estimate how much distributed generation (DG) capacity will be connected to distribution systems in the coming years; however, it is certain that increasing penetration levels require robust tools that help assess the capabilities and requirements of the networks in order to produce the best planning and control strategies. The work of this Task Force is focused on the numerous strategies and methods that have been developed in recent years to address DG integration and planning. This paper contains a critical review of the work in this field. Although there have been numerous publications in this area, widespread implementation of the methods has not taken place. The barriers to implementation of the advanced techniques are outlined, highlighting why network operators have been slow to pick up on the research to date. Furthermore, key challenges ahead which remain to be tackled are also described, many of which have come into clear focus with the current drive towards smarter distribution networks.

381 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the authors survey the literature till 2011 on the enabling technologies for the Smart Grid and explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.
Abstract: The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this article, we survey the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system. We also propose possible future directions in each system. colorred{Specifically, for the smart infrastructure system, we explore the smart energy subsystem, the smart information subsystem, and the smart communication subsystem.} For the smart management system, we explore various management objectives, such as improving energy efficiency, profiling demand, maximizing utility, reducing cost, and controlling emission. We also explore various management methods to achieve these objectives. For the smart protection system, we explore various failure protection mechanisms which improve the reliability of the Smart Grid, and explore the security and privacy issues in the Smart Grid.

2,433 citations

01 Jan 2012
TL;DR: This article surveys the literature till 2011 on the enabling technologies for the Smart Grid, and explores three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.

2,337 citations

Journal ArticleDOI
TL;DR: In this article, a methodology has been proposed for optimally allocating different types of renewable distributed generation (DG) units in the distribution system so as to minimize annual energy loss.
Abstract: It is widely accepted that renewable energy sources are the key to a sustainable energy supply infrastructure since they are both inexhaustible and nonpolluting. A number of renewable energy technologies are now commercially available, the most notable being wind power, photovoltaic, solar thermal systems, biomass, and various forms of hydraulic power. In this paper, a methodology has been proposed for optimally allocating different types of renewable distributed generation (DG) units in the distribution system so as to minimize annual energy loss. The methodology is based on generating a probabilistic generation-load model that combines all possible operating conditions of the renewable DG units with their probabilities, hence accommodating this model in a deterministic planning problem. The planning problem is formulated as mixed integer nonlinear programming (MINLP), with an objective function for minimizing the system's annual energy losses. The constraints include the voltage limits, the feeders' capacity, the maximum penetration limit, and the discrete size of the available DG units. This proposed technique has been applied to a typical rural distribution system with different scenarios, including all possible combinations of the renewable DG units. The results show that a significant reduction in annual energy losses is achieved for all the proposed scenarios.

1,243 citations