scispace - formally typeset
Search or ask a question
Author

Luis Filgueira

Bio: Luis Filgueira is an academic researcher from University of Fribourg. The author has contributed to research in topics: Cytotoxic T cell & Peripheral blood mononuclear cell. The author has an hindex of 38, co-authored 136 publications receiving 5988 citations. Previous affiliations of Luis Filgueira include University of Western Australia & University of Basel.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that CD4+ CD11c−CD3− cells, isolated from tonsils, correspond to the so-called plasmacytoid T cells, an obscure cell type that has long been observed by pathologists within secondary lymphoid tissues.
Abstract: A subset of CD4+CD11c−CD3− blood cells was recently shown to develop into dendritic cells when cultured with monocyte conditioned medium. Here, we demonstrate that CD4+ CD11c−CD3− cells, isolated from tonsils, correspond to the so-called plasmacytoid T cells, an obscure cell type that has long been observed by pathologists within secondary lymphoid tissues. They express CD45RA, but not markers specific for known lymphoid- or myeloid-derived cell types. They undergo rapid apoptosis in culture, unless rescued by IL-3. Further addition of CD40-ligand results in their differentiation into dendritic cells that express low levels of myeloid antigens CD13 and CD33.

1,254 citations

Journal ArticleDOI
TL;DR: Data demonstrate that human skin dendritic cells are permissive for DV infection, and provide a potential mechanism for the transmission of DV into human skin.
Abstract: Dengue virus (DV), an arthropod-borne flavivirus, causes a febrile illness for which there is no antiviral treatment and no vaccine. Macrophages are important in dengue pathogenesis; however, the initial target cell for DV infection remains unknown. As DV is introduced into human skin by mosquitoes of the genus Aedes, we undertook experiments to determine whether human dendritic cells (DCs) were permissive for the growth of DV. Initial experiments demonstrated that blood-derived DCs were 10-fold more permissive for DV infection than were monocytes or macrophages. We confirmed this with human skin DCs (Langerhans cells and dermal/interstitial DCs). Using cadaveric human skin explants, we exposed skin DCs to DV ex vivo. Of the human leukocyte antigen DR-positive DCs that migrated from the skin, emigrants from both dermis and epidermis, 60-80% expressed DV antigens. These observations were supported by histologic findings from the skin rash of a human subject who received an attenuated tetravalent dengue vaccine. Immunohistochemistry of the skin showed CD1a-positive DCs double-labeled with an antibody against DV envelope glycoprotein. These data demonstrate that human skin DCs are permissive for DV infection, and provide a potential mechanism for the transmission of DV into human skin.

647 citations

Journal ArticleDOI
28 Nov 1996-Nature
TL;DR: This work has identified a subset of CD4+CD11c+CD3− dendritic cells in the germinal centres that are strong antigen-presenting cells for T cells, but do not co-stimulate CD40-activated B cells.
Abstract: The B cells within the germinal centres of lymphoid organs undergo affinity maturation of their antigen receptors, a critical event for antibody memory. Follicular dendritic cells within the germinal centres retain immune complexes that select the developing B cells for which they have a higher affinity. We have now identified a subset of CD4+ CD11c+ CD3- dendritic cells in the germinal centres. These are strong antigen-presenting cells for T cells, but do not co-stimulate CD40-activated B cells. These dendritic cells probably stimulate germinal centre T cells and aid the complicated processes that are required for the generation of memory B cells.

296 citations

Journal ArticleDOI
TL;DR: Airway mucosal mDC were more endocytic and presented peptide to naive CD4+ T cells more efficiently than their lung counterparts, indicating a novel mechanism whereby RT-DC function is regulated at the level of protein processing but not peptide loading for naive T cell activation.
Abstract: APCs, including dendritic cells (DC), are central to Ag surveillance in the respiratory tract (RT). Research in this area is dominated by mouse studies on purportedly representative RT-APC populations derived from whole-lung digests, comprising mainly parenchymal tissue. Our recent rat studies identified major functional differences between DC populations from airway mucosal vs parenchymal tissue, thus seriously questioning the validity of this approach. We addressed this issue for the first time in the mouse by separately characterizing RT-APC populations from these two different RT compartments. CD11c(high) myeloid DC (mDC) and B cells were common to both locations, whereas a short-lived CD11c(neg) mDC was unique to airway mucosa and long-lived CD11c(high) macrophage and rapid-turnover multipotential precursor populations were predominantly confined to the lung parenchyma. Airway mucosal mDC were more endocytic and presented peptide to naive CD4+ T cells more efficiently than their lung counterparts. However, mDC from neither site could present whole protein without further maturation in vitro, or following trafficking to lymph nodes in vivo, indicating a novel mechanism whereby RT-DC function is regulated at the level of protein processing but not peptide loading for naive T cell activation.

255 citations

Journal ArticleDOI
TL;DR: Evidence is provided that breastmilk represents a novel and noninvasive source of patient‐specific stem cells with multilineage potential and a method for expansion of these cells in culture is established.
Abstract: The mammary gland undergoes significant remodeling during pregnancy and lactation, which is fuelled by controlled mammary stem cell (MaSC) proliferation. The scarcity of human lactating breast tissue specimens and the low numbers and quiescent state of MaSCs in the resting breast have hindered understanding of both normal MaSC dynamics and the molecular determinants that drive their aberrant self-renewal in breast cancer. Here, we demonstrate that human breastmilk contains stem cells (hBSCs) with multilineage properties. Breastmilk cells from different donors displayed variable expression of pluripotency genes normally found in human embryonic stem cells (hESCs). These genes included the transcription factors (TFs) OCT4, SOX2, NANOG, known to constitute the core self-renewal circuitry of hESCs. When cultured in the presence of mouse embryonic feeder fibroblasts, a population of hBSCs exhibited an encapsulated ESC-like colony morphology and phenotype and could be passaged in secondary and tertiary clonogenic cultures. While self-renewal TFs were found silenced in the normal resting epithelium, they were dramatically upregulated in breastmilk cells cultured in 3D spheroid conditions. Furthermore, hBSCs differentiated in vitro into cell lineages from all three germ layers. These findings provide evidence that breastmilk represents a novel and noninvasive source of patient-specific stem cells with multilineage potential and establish a method for expansion of these cells in culture. They also highlight the potential of these cells to be used as novel models to understand adult stem cell plasticity and breast cancer, with potential use in bioengineering and tissue regeneration.

204 citations


Cited by
More filters
Journal ArticleDOI
19 Mar 1998-Nature
TL;DR: Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis and the realization that these cells are a powerful tool for manipulating the immune system is realized.
Abstract: B and T lymphocytes are the mediators of immunity, but their function is under the control of dendritic cells. Dendritic cells in the periphery capture and process antigens, express lymphocyte co-stimulatory molecules, migrate to lymphoid organs and secrete cytokines to initiate immune responses. They not only activate lymphocytes, they also tolerize T cells to antigens that are innate to the body (self-antigens), thereby minimizing autoimmune reactions. Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis. With knowledge comes the realization that these cells are a powerful tool for manipulating the immune system.

14,532 citations

Journal ArticleDOI
TL;DR: Dendritic cells are antigen-presenting cells with a unique ability to induce primary immune responses and may be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response.
Abstract: Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.

6,758 citations

Journal ArticleDOI
TL;DR: Recognition of microbial infection and initiation of host defense responses is controlled by multiple mechanisms and recent studies have provided important clues about the mechanisms of TLR-mediated control of adaptive immunity orchestrated by dendritic cell populations in distinct anatomical locations.
Abstract: Recognition of microbial infection and initiation of host defense responses is controlled by multiple mechanisms. Toll-like receptors (TLRs) have recently emerged as a key component of the innate immune system that detect microbial infection and trigger antimicrobial host defense responses. TLRs activate multiple steps in the inflammatory reactions that help to eliminate the invading pathogens and coordinate systemic defenses. In addition, TLRs control multiple dendritic cell functions and activate signals that are critically involved in the initiation of adaptive immune responses. Recent studies have provided important clues about the mechanisms of TLR-mediated control of adaptive immunity orchestrated by dendritic cell populations in distinct anatomical locations.

4,108 citations

Journal ArticleDOI
09 Sep 2011-Science
TL;DR: It is shown that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice and this work suggests that deficits in microglian function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.
Abstract: Microglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice. These findings link microglia surveillance to synaptic maturation and suggest that deficits in microglia function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.

3,011 citations

Journal ArticleDOI
TL;DR: Some of the chemokines' biological effects in vivo and in vitro, described in the last few years are discussed, and the implications of these findings when considering chemokine receptors as therapeutic targets are discussed.
Abstract: During the last five years, the development of bioinformatics and EST databases has been primarily responsible for the identification of many new chemokines and chemokine receptors. The chemokine field has also received considerable attention since chemokine receptors were found to act as co-receptors for HIV infection (1). In addition, chemokines, along with adhesion molecules, are crucial during inflammatory responses for a timely recruitment of specific leukocyte subpopulations to sites of tissue damage. However, chemokines and their receptors are also important in dendritic cell maturation (2), B (3), and T (4) cell development, Th1 and Th2 responses, infections, angiogenesis, and tumor growth as well as metastasis (5). Furthermore, an increase in the number of chemokine/receptor transgenic and knock-out mice has helped to define the functions of chemokines in vivo. In this review we discuss some of the chemokines' biological effects in vivo and in vitro, described in the last few years, and the implications of these findings when considering chemokine receptors as therapeutic targets.

2,473 citations