scispace - formally typeset
Search or ask a question
Author

Luis G. Arnaut

Bio: Luis G. Arnaut is an academic researcher from University of Coimbra. The author has contributed to research in topics: Photodynamic therapy & Singlet oxygen. The author has an hindex of 39, co-authored 185 publications receiving 5677 citations. Previous affiliations of Luis G. Arnaut include Federal University of São Carlos & University of Wuppertal.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the intrinsic processes and mechanisms of proton transfer in relation to the nature of the intramolecular hydrogen bond ring are reviewed. But the authors focus on the intrinsic process and not the mechanisms of transfer.
Abstract: Excited-state intramolecular proton transfer reactions are reviewed. Special emphasis is given to the intrinsic processes and to the mechanisms of proton transfers in relation to the nature of the intramolecular hydrogen bond ring.

647 citations

Journal ArticleDOI
TL;DR: Theoretical models that have been proposed and applied to proton transfer reactions are reviewed in this paper, where simple models, like the Eigen model, Marcus theory and the intersecting state model, are applied to excited-state intermolecular proton transfers.
Abstract: Theoretical models that have been proposed and applied to proton transfer reactions are reviewed in this work. Simple models, like the Eigen model, Marcus theory and the intersecting state model, are applied to excited-state intermolecular proton transfers. The kinetics and thermodynamics of proton transfers occuring in the singlet states of aromatic molecules with OH, NH3+, NH2 and CO substituents are reviewed.

507 citations

Journal ArticleDOI
TL;DR: A multidisciplinary view of the issues raised by the development of PDT is presented, showing how spectroscopy, photophysics, photochemistry and pharmacokinetics of photosensitizers determine the mechanism of cell death and clinical protocols.
Abstract: Photodynamic therapy (PDT) requires a medical device, a photosensitizing drug and adequate use of both to trigger biological mechanisms that can rapidly destroy the primary tumour and provide long-lasting protection against metastasis. We present a multidisciplinary view of the issues raised by the development of PDT. We show how spectroscopy, photophysics, photochemistry and pharmacokinetics of photosensitizers determine the mechanism of cell death and clinical protocols. Various examples of combinations with chemotherapies and immunotherapies illustrate the opportunities to potentiate the outcome of PDT. Particular emphasis is given to the mechanisms that can be exploited to establish PDT as a systemic treatment of solid tumours and metastatic disease.

338 citations

Journal ArticleDOI
TL;DR: In this paper, photoacoustic calorimetry was used to measure the quantum yields of singlet molecular oxygen production by the triplet states of tetraphenylporphyrin (TPP), ZnTPP and CuTPP in toluene, yielding values of 0.67 0.14, 0.68 0.19 and 0.03 0.07 quantum yield.
Abstract: Photoacoustic calorimetry was used to measure the quantum yields of singlet molecular oxygen production by the triplet states of tetraphenylporphyrin (TPP), ZnTPP and CuTPP in toluene, yielding values of 0.67 0.14, 0.68 0.19 and 0.03 0.01, respectively. We show that a novel dichlorophenyl derivative of ZnTPP is capable of singlet-oxygen production with a 0.90 0.07 quantum yield. The synthesis and characterisation of a new photostable chlorin with high absorptivity in the red that is capable of singlet-oxygen production with 0.54 0.06 quantum yield is described. Our results suggest that chlorinated chlorins may be interesting new sensitisers for photodynamic therapy.

209 citations

Journal ArticleDOI
TL;DR: The investigation of the mechanisms of cell death under the oxidative stress of PDT is of paramount importance to understand how the immune system is activated and, ultimately, to make PDT a more appealing/relevant therapeutic option.

200 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.
Abstract: In this review, we highlight the use of organic photoredox catalysts in a myriad of synthetic transformations with a range of applications. This overview is arranged by catalyst class where the photophysics and electrochemical characteristics of each is discussed to underscore the differences and advantages to each type of single electron redox agent. We highlight both net reductive and oxidative as well as redox neutral transformations that can be accomplished using purely organic photoredox-active catalysts. An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.

3,550 citations

Journal ArticleDOI
TL;DR: The Rehybridization of the Acceptor (RICT) and Planarization ofThe Molecule (PICT) III is presented, with a comparison of the effects on yield and radiationless deactivation processes.
Abstract: 6. Rehybridization of the Acceptor (RICT) 3908 7. Planarization of the Molecule (PICT) 3909 III. Fluorescence Spectroscopy 3909 A. Solvent Effects and the Model Compounds 3909 1. Solvent Effects on the Spectra 3909 2. Steric Effects and Model Compounds 3911 3. Bandwidths 3913 4. Isoemissive Points 3914 B. Dipole Moments 3915 C. Radiative Rates and Transition Moments 3916 1. Quantum Yields and Radiationless Deactivation Processes 3916

2,924 citations

Journal ArticleDOI
TL;DR: In this article, the photophysical properties of singlet molecular oxygen and of the photosensitizers used in its generation are examined and compared, with particular focus on its role in wastewater treatment, fine chemical synthesis, and photodynamic therapy.

2,382 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling study of the response of the immune system to chemotherapy and its applications in the context of central nervous system disorders.
Abstract: Sasidharan Swarnalatha Lucky,†,§ Khee Chee Soo,‡ and Yong Zhang*,†,§,∥ †NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456 ‡Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore 169610 Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576 College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, P. R. China 321004

2,194 citations

Journal ArticleDOI
TL;DR: Proton-coupled electron transfer is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues and several are reviewed.
Abstract: ▪ Abstract Proton-coupled electron transfer (PCET) is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues. We review several are...

2,182 citations