scispace - formally typeset
Search or ask a question
Author

Luis Lowe

Bio: Luis Lowe is an academic researcher from Centers for Disease Control and Prevention. The author has contributed to research in topics: Measles & Measles virus. The author has an hindex of 23, co-authored 34 publications receiving 5270 citations. Previous affiliations of Luis Lowe include National Center for Immunization and Respiratory Diseases.

Papers
More filters
Journal ArticleDOI
30 May 2003-Science
TL;DR: Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closelyrelated to any of the previouslycharacterized coronaviruses.
Abstract: In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.

2,420 citations

Journal ArticleDOI
TL;DR: Nipah virus, not previously detected in India, caused an outbreak of febrile encephalitis in West Bengal, leading to an investigation into how the virus spread in the state.
Abstract: During January and February 2001, an outbreak of febrile illness associated with altered sensorium was observed in Siliguri, West Bengal, India. Laboratory investigations at the time of the outbreak did not identify an infectious agent. Because Siliguri is in close proximity to Bangladesh, where outbreaks of Nipah virus (NiV) infection were recently described, clinical material obtained during the Siliguri outbreak was retrospectively analyzed for evidence of NiV infection. NiV-specific immunoglobulin M (IgM) and IgG antibodies were detected in 9 of 18 patients. Reverse transcription–polymerase chain reaction (RT-PCR) assays detected RNA from NiV in urine samples from 5 patients. Sequence analysis confirmed that the PCR products were derived from NiV RNA and suggested that the NiV from Siliguri was more closely related to NiV isolates from Bangladesh than to NiV isolates from Malaysia. NiV infection has not been previously detected in India.

450 citations

Journal ArticleDOI
TL;DR: Transmission of this virus highlights the need for infection control strategies for resource-poor settings and calls for increased awareness of infection control measures in these settings.
Abstract: An encephalitis outbreak was investigated in Faridpur District, Bangladesh, in April–May 2004 to determine the cause of the outbreak and risk factors for disease. Biologic specimens were tested for Nipah virus. Surfaces were evaluated for Nipah virus contamination by using reverse transcription–PCR (RT-PCR). Thirty-six cases of Nipah virus illness were identified; 75% of case-patients died. Multiple peaks of illness occurred, and 33 case-patients had close contact with another Nipah virus patient before their illness. Results from a case-control study showed that contact with 1 patient carried the highest risk for infection (odds ratio 6.7, 95% confidence interval 2.9–16.8, p<0.001). RT-PCR testing of environmental samples confirmed Nipah virus contamination of hospital surfaces. This investigation provides evidence for person-to-person transmission of Nipah virus. Capacity for person-to-person transmission increases the potential for wider spread of this highly lethal pathogen and highlights the need for infection control strategies for resource-poor settings.

385 citations

Journal ArticleDOI
TL;DR: A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV) and proved suitable to detect SARS- coV in clinical specimens.
Abstract: A real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome-associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection.

300 citations

Journal ArticleDOI
TL;DR: In 2005, a 17-year-old unvaccinated girl who was incubating measles returned from Romania, creating the largest documented outbreak of measles in the United States since 1996 as discussed by the authors.
Abstract: Background Measles was declared eliminated from the United States in 2000 but remains endemic worldwide. In 2005, a 17-year-old unvaccinated girl who was incubating measles returned from Romania, creating the largest documented outbreak of measles in the United States since 1996. Methods We conducted a case-series investigation, molecular typing of viral isolates, surveys of rates of vaccination coverage, interviews regarding attitudes toward vaccination, and cost surveys. Results Approximately 500 persons attended a gathering with the index patient one day after her return home. Approximately 50 lacked evidence of measles immunity, of whom 16 (32 percent) acquired measles at the gathering. During the six weeks after the gathering, a total of 34 cases of measles were confirmed. Of the patients with confirmed measles, 94 percent were unvaccinated, 88 percent were less than 20 years of age, and 9 percent were hospitalized. Of the 28 patients who were 5 to 19 years of age, 71 percent were home-schooled. Vaccine failure occurred in two persons. The virus strain was genotype D4, which is endemic in Romania. Although containment measures began after 20 persons were already infectious, measles remained confined mostly to children whose parents had refused to have them vaccinated, primarily out of concern for adverse events from the vaccine. Seventy-one percent of patients were from four households. Levels of measles-vaccination coverage in Indiana were 92 percent for preschoolers and 98 percent for sixth graders. Estimated costs of containing the disease were at least 167,685 dollars, including 113,647 dollars at a hospital with an infected employee. Conclusions This outbreak was caused by the importation of measles into a population of children whose parents had refused to have them vaccinated because of safety concerns about the vaccine. High vaccination levels in the surrounding community and low rates of vaccine failure averted an epidemic. Maintenance of high rates of vaccination coverage, including improved strategies of communication with persons who refuse vaccination, is necessary to prevent future outbreaks and sustain the elimination of measles in the United States.

250 citations


Cited by
More filters
Journal ArticleDOI
27 Nov 2003-Nature
TL;DR: It is found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells, indicating that ACE2 is a functional receptor for SARS-CoV.
Abstract: Spike (S) proteins of coronaviruses, including the coronavirus that causes severe acute respiratory syndrome (SARS), associate with cellular receptors to mediate infection of their target cells Here we identify a metallopeptidase, angiotensin-converting enzyme 2 (ACE2), isolated from SARS coronavirus (SARS-CoV)-permissive Vero E6 cells, that efficiently binds the S1 domain of the SARS-CoV S protein We found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells 293T cells transfected with ACE2, but not those transfected with human immunodeficiency virus-1 receptors, formed multinucleated syncytia with cells expressing S protein Furthermore, SARS-CoV replicated efficiently on ACE2-transfected but not mock-transfected 293T cells Finally, anti-ACE2 but not anti-ACE1 antibody blocked viral replication on Vero E6 cells Together our data indicate that ACE2 is a functional receptor for SARS-CoV

5,149 citations

Journal ArticleDOI
TL;DR: The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
Abstract: A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.

4,809 citations

Journal ArticleDOI
TL;DR: A molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses is provided.
Abstract: During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world. A new coronavirus (SARS-CoV) was identified as the SARS pathogen, which triggered severe pneumonia and acute, often lethal, lung failure. Moreover, among infected individuals influenza such as the Spanish flu and the emergence of new respiratory disease viruses have caused high lethality resulting from acute lung failure. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.

2,983 citations

Book ChapterDOI
TL;DR: A brief introduction to coronaviruses is provided discussing their replication and pathogenicity, and current prevention and treatment strategies, and the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratories Syndrome Cor onavirus
Abstract: Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease in chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).

2,846 citations

Journal ArticleDOI
28 Oct 2005-Science
TL;DR: It is reported that species of bats are a natural host of coronaviruses closely related to those responsible for the SARS outbreak, and these viruses display greater genetic variation than SARS-CoV isolated from humans or from civets.
Abstract: Severe acute respiratory syndrome (SARS) emerged in 2002 to 2003 in southern China. The origin of its etiological agent, the SARS coronavirus (SARS-CoV), remains elusive. Here we report that species of bats are a natural host of coronaviruses closely related to those responsible for the SARS outbreak. These viruses, termed SARS-like coronaviruses (SL-CoVs), display greater genetic variation than SARS-CoV isolated from humans or from civets. The human and civet isolates of SARS-CoV nestle phylogenetically within the spectrum of SL-CoVs, indicating that the virus responsible for the SARS outbreak was a member of this coronavirus group.

2,263 citations