scispace - formally typeset
Search or ask a question
Author

Luis Velasco

Bio: Luis Velasco is an academic researcher from Polytechnic University of Catalonia. The author has contributed to research in topics: Network topology & Multiprotocol Label Switching. The author has an hindex of 33, co-authored 253 publications receiving 3653 citations. Previous affiliations of Luis Velasco include University of Rome Tor Vergata & UPC Ireland.


Papers
More filters
Journal ArticleDOI
TL;DR: This study addresses an off-line RSA problem in which enough spectrum needs to be allocated for each demand of a given traffic matrix and presents novel integer lineal programming (ILP) formulations of RSA that are based on the assignment of channels.
Abstract: Flexgrid optical networks are attracting huge interest due to their higher spectrum efficiency and flexibility in comparison with traditional wavelength switched optical networks based on the wavelength division multiplexing technology. To properly analyze, design, plan, and operate flexible and elastic networks, efficient methods are required for the routing and spectrum allocation (RSA) problem. Specifically, the allocated spectral resources must be, in absence of spectrum converters, the same along the links in the route (the continuity constraint) and contiguous in the spectrum (the contiguity constraint). In light of the fact that the contiguity constraint adds huge complexity to the RSA problem, we introduce the concept of channels for the representation of contiguous spectral resources. In this paper, we show that the use of a pre-computed set of channels allows considerably reducing the problem complexity. In our study, we address an off-line RSA problem in which enough spectrum needs to be allocated for each demand of a given traffic matrix. To this end, we present novel integer lineal programming (ILP) formulations of RSA that are based on the assignment of channels. The evaluation results reveal that the proposed approach allows solving the RSA problem much more efficiently than previously proposed ILP-based methods and it can be applied even for realistic problem instances, contrary to previous ILP formulations.

206 citations

Journal ArticleDOI
TL;DR: This tutorial paper reviews several machine learning concepts tailored to the optical networking industry and discusses algorithm choices, data and model management strategies, and integration into existing network control and management tools.
Abstract: Networks are complex interacting systems involving cloud operations, core and metro transport, and mobile connectivity all the way to video streaming and similar user applications.With localized and highly engineered operational tools, it is typical of these networks to take days to weeks for any changes, upgrades, or service deployments to take effect. Machine learning, a sub-domain of artificial intelligence, is highly suitable for complex system representation. In this tutorial paper, we review several machine learning concepts tailored to the optical networking industry and discuss algorithm choices, data and model management strategies, and integration into existing network control and management tools. We then describe four networking case studies in detail, covering predictive maintenance, virtual network topology management, capacity optimization, and optical spectral analysis.

201 citations

Journal ArticleDOI
TL;DR: This article explores the elastic spectrum allocation capability of FG-ON and forms a Multi-Hour Routing and Spectrum Allocation optimization problem and solves it by means of both Integer Linear Programming (ILP) and efficient heuristic algorithms.
Abstract: Elastic flexgrid optical networks (FG-ON) are considered a very promising solution for next-generation optical networks. In this article we focus on lightpath adaptation under variable traffic demands in FG-ON. Specifically, we explore the elastic spectrum allocation (SA) capability of FG-ON and, in this context, we study the effectiveness of three alternative SA schemes in terms of the network performance. To this end, we formulate a Multi-Hour Routing and Spectrum Allocation (MH-RSA) optimization problem and solve it by means of both Integer Linear Programming (ILP) and efficient heuristic algorithms. Since, as numerical results show, the effectiveness of SA schemes highly depends on the traffic demand profile, we formulate some indications on the applicability of elastic SA in FG-ON.

162 citations

Journal ArticleDOI
TL;DR: An RSA algorithm to be used in dynamic network scenarios is presented, the optimal slot width is studied as a function of the foreseen traffic to be served, and an algorithm to reallocate already established optical connections so that to make room in the spectrum for the new ones is proposed.

145 citations

Journal ArticleDOI
TL;DR: An architecture that allows collecting and storing data from monitoring at the routers and that is used to train predictive models for every origin-destination pair is proposed, and a heuristic is proposed to solve the reconfiguration problem in practical times.
Abstract: The introduction of new services requiring large and dynamic bitrate connectivity can cause changes in the direction of the traffic in metro and even core network segments throughout the day. This leads to large overprovisioning in statically managed virtual network topologies (VNTs), which are designed to cope with the traffic forecast. To reduce expenses while ensuring the required grade of service, in this paper we propose a VNT reconfiguration approach based on data analytics for traffic prediction (VENTURE). It regularly reconfigures the VNT based on the predicted traffic, thus adapting the topology to both the current and the predicted traffic volume and direction. A machine learning algorithm based on an artificial neural network is used to provide robust and adaptive traffic models. The reconfiguration problem that takes as its input the traffic prediction is modeled mathematically, and a heuristic is proposed to solve it in practical times. To support VENTURE, we propose an architecture that allows collecting and storing data from monitoring at the routers and that is used to train predictive models for every origin-destination pair. Exhaustive simulation results of the algorithm, together with the experimental assessment of the proposed architecture, are finally presented.

108 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
01 Jan 2015
TL;DR: This paper presents an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications, and presents the key building blocks of an SDN infrastructure using a bottom-up, layered approach.
Abstract: The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

3,589 citations

Posted Content
TL;DR: Software-Defined Networking (SDN) as discussed by the authors is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network.
Abstract: Software-Defined Networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound APIs, network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms -- with a focus on aspects such as resiliency, scalability, performance, security and dependability -- as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

1,968 citations

Journal ArticleDOI
TL;DR: The current research state-of-the-art of 5G IoT, key enabling technologies, and main research trends and challenges in5G IoT are reviewed.

992 citations

Journal ArticleDOI
TL;DR: This paper provides a tutorial on fog computing and its related computing paradigms, including their similarities and differences, and provides a taxonomy of research topics in fog computing.

783 citations