scispace - formally typeset
Search or ask a question
Author

Lukas Zimmermann

Bio: Lukas Zimmermann is an academic researcher from University of Basel. The author has contributed to research in topics: Ice crystals & Ice nucleus. The author has an hindex of 5, co-authored 6 publications receiving 150 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new drop-freezing instrument is presented, where freezing in closed tubes is detected automatically by a change in light transmission upon ice development, caused by the formation of air bubbles and crystal facets that scatter light.
Abstract: . For decades, drop-freezing instruments have contributed to a better understanding of biological ice nucleation and its likely implications for cloud and precipitation development. Yet, current instruments have limitations. Drops analysed on a cold stage are subject to evaporation and potential contamination. The use of closed tubes provides a partial solution to these problems, but freezing events are still difficult to be clearly detected. Here, we present a new apparatus where freezing in closed tubes is detected automatically by a change in light transmission upon ice development, caused by the formation of air bubbles and crystal facets that scatter light. Risks of contamination and introduction of biases linked to detecting the freezing temperature of a sample are then minimized. To illustrate the performance of the new apparatus we show initial results of two assays with snow samples. In one, we repeatedly analysed the sample (208 tubes) over the course of a month with storage at +4 °C, during which evidence for biological ice nucleation activity emerged through an increase in the number of ice nucleators active around −4 °C. In the second assay, we indicate the possibility of increasingly isolating a single ice nucleator from a precipitation sample, potentially determining the nature of a particle responsible for a nucleation activity measured directly in the sample. These two seminal approaches highlight the relevance of this handy apparatus for providing new points of view in biological ice nucleation research.

66 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantify the land-surface influence at Jungfraujoch hour by hour and detect the presence of anabatic winds on a daily basis during 2010-2011, but only from April to September.
Abstract: . Atmospheric composition measurements at Jungfraujoch are affected intermittently by boundary-layer air which is brought to the station by processes including thermally driven (anabatic) mountain winds. Using observations of radon-222, and a new objective analysis method, we quantify the land-surface influence at Jungfraujoch hour by hour and detect the presence of anabatic winds on a daily basis. During 2010–2011, anabatic winds occurred on 40% of days, but only from April to September. Anabatic wind days were associated with warmer air temperatures over a large fraction of Europe and with a shift in air-mass properties, even when comparing days with a similar mean radon concentration. Excluding days with anabatic winds, however, did not lead to a better definition of the unperturbed aerosol background than a definition based on radon alone. This implies that a radon threshold reliably excludes local influences from both anabatic and non-anabatic vertical-transport processes.

42 citations

Journal ArticleDOI
TL;DR: In this paper, a coastal mountain observatory in northern Norway revealed a tripling in concentrations of ice nucleating particles (IN) active at −15 °C (IN-15) in oceanic air after about one day of passage over land.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the authors made use of the fact that planar, branched ice crystals (e.g. dendrites) grow within a relatively narrow temperature range (i.e. −12 to −17 ∘ C) and can be analyzed individually for INPs using a field-deployable drop-freezing assay.
Abstract: . Ice crystal numbers can exceed the numbers of ice-nucleating particles (INPs) observed in mixed-phase clouds (MPCs) by several orders of magnitude, also at temperatures that are colder than −8 ∘ C. This disparity provides circumstantial evidence of secondary ice formation, also other than via the Hallett–Mossop process. In a new approach, we made use of the fact that planar, branched ice crystals (e.g. dendrites) grow within a relatively narrow temperature range (i.e. −12 to −17 ∘ C) and can be analysed individually for INPs using a field-deployable drop-freezing assay. The novelty of our approach lies in comparing the growth temperature encoded in the habit of an individual crystal with the activation temperature of the most efficient INP contained within the same crystal to tell whether it may be the result of primary ice formation. In February and March 2018, we analysed a total of 190 dendritic crystals ( ∼3 mm median size) deposited within MPCs at the high-altitude research station Jungfraujoch (3580 m a.s.l.). Overall, one in eight of the analysed crystals contained an INP active at −17 ∘ C or warmer, while the remaining seven most likely resulted from secondary ice formation within the clouds. The ice multiplication factor we observed was small (8), but relatively stable throughout the course of documentation. These measurements show that secondary ice can be observed at temperatures around −15 ∘ C and thus advance our understanding of the extent of secondary ice formation in MPCs, even where the multiplication factor is smaller than 10.

28 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that in practice, the 222Radon tracer method produces inaccurate results in case of nonhomogeneously spread emission sources, and propose a different approach to account for this.
Abstract: The 222Radon tracer method is a powerful tool to estimate local and regional surface emissions of, e.g., greenhouse gases. In this paper we demonstrate that in practice, the method as it is commonly used, produces inaccurate results in case of nonhomogeneously spread emission sources, and we propose a different approach to account for this. We have applied the new methodology to ambient observations of CO2 and 222Radon to estimate CO2 surface emissions for the city of Bern, Switzerland. Furthermore, by utilizing combined measurements of CO2 and δ(O2/N2) we obtain valuable information about the spatial and temporal variability of the main emission sources. Mean net CO2 emissions based on 2 years of observations are estimated at (11.2 ± 2.9) kt km−2 a−1. Oxidative ratios indicate a significant influence from the regional biosphere in summer/spring and fossil fuel combustion processes in winter/autumn. Our data indicate that the emissions from fossil fuels are, to a large degree, related to the combustion of natural gas which is used for heating purposes.

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, new developments in identifying the heterogeneous freezing mechanisms, atmospheric relevance, uncertainties, and unknowns about ice nucleating particles (INPs) have been described, and the change in conventional wisdom regarding the requirements of INPs as new studies discover physical and chemical properties of these particles is explained.
Abstract: Ice particle formation in tropospheric clouds significantly changes cloud radiative and microphysical properties. Ice nucleation in the troposphere via homogeneous freezing occurs at temperatures lower than −38°C and relative humidity with respect to ice above 140%. In the absence of these conditions, ice formation can proceed via heterogeneous nucleation aided by aerosol particles known as ice nucleating particles (INPs). In this chapter, new developments in identifying the heterogeneous freezing mechanisms, atmospheric relevance, uncertainties, and unknowns about INPs are described. The change in conventional wisdom regarding the requirements of INPs as new studies discover physical and chemical properties of these particles is explained. INP sources and known reasons for their ice nucleating properties are presented. The need for more studies to systematically identify particle properties that facilitate ice nucleation is highlighted. The atmospheric relevance of long-range transport, aerosol a...

437 citations

Journal ArticleDOI
TL;DR: This article revisited estimation of atmospheric ice-nucleating particle concentration derived from cloud water and precipitation samples representing a wide range of geographical locations, seasons, storm systems, precipitation types, instruments, concentrations, and temperatures.
Abstract: An emerging and unsolved question is the sensitivity of cloud processes, precipitation, and climate to the atmospheric ice nucleus spectrum. This work revisits estimation of atmospheric ice-nucleating particle concentration derived from cloud water and precipitation samples representing a wide range of geographical locations, seasons, storm systems, precipitation types, instruments, concentrations, and temperatures. Concentrations of ice-nucleating particles are shown to vary over 10 orders of magnitude. High variability is observed in the −5°C to −12°C range which is suggested to be biologically derived nuclei whose life cycle is associated with intermittent source and efficient sink processes. The highest ever observed nucleus concentrations at −8°C are 3 orders of magnitude lower than observed ice crystal concentrations in tropical cumuli at the same temperature. The observed upper and lower limits of the nucleus spectrum provide a possible constraint on minimum enhancement factors for secondary ice formation processes.

130 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantify the number of ice nucleating particles (INPs) in the free troposphere (FT) as measured at the High Altitude Research Station Jungfraujoch (JFJ), during the winter, spring, and summer of the years 2014-2017.
Abstract: Clouds containing ice are vital for precipitation formation and are important in determining the Earth’s radiative budget. However, primary formation of ice in clouds is not fully understood. In the presence of ice nucleating particles (INPs), the phase change to ice is promoted, but identification and quantification of INPs in a natural environment remains challenging because of their low numbers. In this paper, we quantify INP number concentrations in the free troposphere (FT) as measured at the High Altitude Research Station Jungfraujoch (JFJ), during the winter, spring, and summer of the years 2014–2017. INPs were measured at conditions relevant for mixed-phase cloud formation at T = 241/242 K. To date, this is the longest timeline of semiregular measurements akin to online INP monitoring at this site and sampling conditions. We find that INP concentrations in the background FT are on average capped at 10/stdL (liter of air at standard conditions [T = 273 K and p = 1013 hPa]) with an interquartile range of 0.4–9.6/stdL, as compared to measurements during times when other air mass origins (e.g., Sahara or marine boundary layer) prevailed. Elevated concentrations were measured in the field campaigns of 2016, which might be due to enhanced influence from Saharan dust andmarine boundary layer air arriving at the JFJ. The upper limit of INP concentrations in the background FT is supported by measurements performed at similar conditions, but at different locations in the FT, where we find INP concentrations to be below 13/stdL most of the time.

121 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe an experimental technique in which droplets of microlitre volume containing ice-nucleating material are cooled down at a controlled rate and their freezing temperatures recorded.
Abstract: . In many clouds, the formation of ice requires the presence of particles capable of nucleating ice. Ice-nucleating particles (INPs) are rare in comparison to cloud condensation nuclei. However, the fact that only a small fraction of aerosol particles can nucleate ice means that detection and quantification of INPs is challenging. This is particularly true at temperatures above about −20 °C since the population of particles capable of serving as INPs decreases dramatically with increasing temperature. In this paper, we describe an experimental technique in which droplets of microlitre volume containing ice-nucleating material are cooled down at a controlled rate and their freezing temperatures recorded. The advantage of using large droplet volumes is that the surface area per droplet is vastly larger than in experiments focused on single aerosol particles or cloud-sized droplets. This increases the probability of observing the effect of less common, but important, high-temperature INPs and therefore allows the quantification of their ice nucleation efficiency. The potential artefacts which could influence data from this experiment, and other similar experiments, are mitigated and discussed. Experimentally determined heterogeneous ice nucleation efficiencies for K-feldspar (microcline), kaolinite, chlorite, NX-illite, Snomax® and silver iodide are presented.

118 citations

Journal ArticleDOI
TL;DR: In this paper, the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites, was applied to 256 particulate matter (PM) filter samples (PM1, PM2, and PM10) collected at 16 urban and rural sites during summer and winter.
Abstract: . Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60–91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

105 citations