scispace - formally typeset
Search or ask a question
Author

Luqin Yang

Other affiliations: University at Buffalo
Bio: Luqin Yang is an academic researcher from Colorado State University. The author has contributed to research in topics: Vanadium & Ligand. The author has an hindex of 3, co-authored 3 publications receiving 1305 citations. Previous affiliations of Luqin Yang include University at Buffalo.
Topics: Vanadium, Ligand

Papers
More filters
Journal ArticleDOI
TL;DR: Aqueous V(III) Chemistry 877 6.2.1.
Abstract: 6.1.2. Aqueous V(III) Chemistry 877 6.1.3. Oxidation State of Vanadium in Tunicates 878 6.1.4. Uptake of Vanadate into Tunicates 879 6.1.5. Vanadium Binding Proteins: Vanabins 879 6.1.6. Model Complexes and Their Chemistry 880 6.1.7. Catechol-Based Model Chemistry 880 6.1.8. Vanadium Sulfate Complexes 881 6.2. Fan Worm Pseudopotamilla occelata 883 7. Vanadium Nitrogenase 883 7.1. Nitrogenases 883 7.2. Biochemistry of Nitrogenase 884 7.3. Clusters in Nitrogenase and Model Systems: Structure and Reactivity 885

1,184 citations

Journal ArticleDOI
TL;DR: The synthesis and characterization of Co(II) and Co(III) 2,6-pyridinedicarboxylate (dipic(2-) complexes are reported and novel aspects of structural and solution cobalt chemistry are described.
Abstract: The synthesis and characterization of Co(II) and Co(III) 2,6-pyridinedicarboxylate (dipic2-) complexes are reported. Solid-state X-ray characterizations were performed on [Co(H2dipic)(dipic)]·3H2O and [Co(dipic)(μ-dipic)Co(H2O)5]·2H2O. Two coordination modes not previously observed in dipicolinate transition metal complexes were observed in these complexes; one involves metal coordination to the short C−O (CO) bond, and the other involves metal coordination to a protonated oxygen atom. Solution studies, including paramagnetic NMR and UV−vis spectroscopy, were done showing the high stability and low lability of the Co(III) complex, whereas the Co(II) complexes exhibited ligand exchange in the presence of excess ligand. The [Co(dipic)2]2- complex has pH dependent lability and in this regard is most similar to the [VO2dipic]- complex. The [Co(dipic)2]2- was found to be effective in reducing the hyperlipidemia of diabetes using oral administration in drinking water in rats with STZ-induced diabetes. Oral admi...

151 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process and the role of enzymatic and non-enzymatic antioxidants in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors.

5,937 citations

Journal ArticleDOI
TL;DR: In this critical review the synthetic and design approaches to the many polyoxometalate cluster types are presented encompassing all the sub-types of polyxometalates including, isopolyoxometAlates, heteropolyoxometricalates, and reduced molybdenum blue systems.
Abstract: Polyoxometalates represent a diverse range of molecular clusters with an almost unmatched range of physical properties and the ability to form structures that can bridge several length scales. The new building block principles that have been discovered are beginning to allow the design of complex clusters with desired properties and structures and several structural types and novel physical properties are examined. In this critical review the synthetic and design approaches to the many polyoxometalate cluster types are presented encompassing all the sub-types of polyoxometalates including, isopolyoxometalates, heteropolyoxometalates, and reduced molybdenum blue systems. As well as the fundamental structure and bonding aspects, the final section is devoted to discussing these clusters in the context of contemporary and emerging interdisciplinary interests from areas as diverse as anti-viral agents, biological ion transport models, and materials science.

1,902 citations

Book
01 Jan 2013
TL;DR: In this article, the authors defined the sources of heavy metals and metalloids in Soils and derived methods for the determination of Heavy Metals and Metalloids in soil.
Abstract: Preface.- Contributors.- List of Abbreviations.- Section 1: Basic Principles: Introduction.-Sources of Heavy Metals and Metalloids in Soils.- Chemistry of Heavy Metals and Metalloids in Soils.- Methods for the Determination of Heavy Metals and Metalloids in Soils.- Effects of Heavy Metals and Metalloids on Soil Organisms.- Soil-Plant Relationships of Heavy Metals and Metalloids.- Heavy Metals and Metalloids as Micronutrients for Plants and Animals.-Critical Loads of Heavy Metals for Soils.- Section 2: Key Heavy Metals And Metalloids: Arsenic.- Cadmium.- Chromium and Nickel.- Cobalt and Manganese.- Copper.-Lead.- Mercury.- Selenium.- Zinc.- Section 3: Other Heavy Metals And Metalloids Of Potential Environmental Significance: Antimony.- Barium.- Gold.- Molybdenum.- Silver.- Thallium.- Tin.- Tungsten.- Uranium.- Vanadium.- Glossary of Specialized Terms.- Index.

1,684 citations

Journal ArticleDOI
TL;DR: This review systematically introduces the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years.
Abstract: Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.

1,549 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase replacement of Na6(CO3)(SO4)2, Na2SO4, and Na2CO3 of the H2O/O2 mixture and shows clear patterns in the response of these two types of molecules to each other in a stationary phase.
Abstract: Brian M. Hoffman,* Dmitriy Lukoyanov, Zhi-Yong Yang,† Dennis R. Dean,*,‡ and Lance C. Seefeldt*,† †Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States ‡Department of Biochemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States Departments of Chemistry and Molecular Biosciences, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

1,247 citations