scispace - formally typeset
Search or ask a question
Author

Lutz Lammich

Other affiliations: Max Planck Society
Bio: Lutz Lammich is an academic researcher from Aarhus University. The author has contributed to research in topics: Dissociative recombination & Ion. The author has an hindex of 21, co-authored 66 publications receiving 1476 citations. Previous affiliations of Lutz Lammich include Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the dissociative recombination of D2H+ with low-energy electrons depends on the rotational energy of the molecular ion such that highly excited ions have a larger rate coefficient than colder ones.
Abstract: We demonstrate that the dissociative recombination of D 2 H + with low-energy electrons depends on the rotational energy of the molecular ion such that highly excited ions have a larger rate coefficient than colder ones. Observations on an ion beam continuously interacting with electrons at low relative velocity indicate that excited rotational levels are preferentially depleted which, in competition with radiative heating due to blackbody radiation, provides an opportunity for controlling the rotational temperature of stored molecules.

124 citations

Journal ArticleDOI
TL;DR: The energy-resolved rate coefficient for the dissociative recombination (DR) of H(3)(+) with slow electrons has been measured by the storage-ring method using an ion beam produced from a radiofrequency multipole ion trap, employing buffer-gas cooling at 13 K.
Abstract: The energy-resolved rate coefficient for the dissociative recombination (DR) of $\mathrm{H}_{3}{}^{+}$ with slow electrons has been measured by the storage-ring method using an ion beam produced from a radiofrequency multipole ion trap, employing buffer-gas cooling at 13 K. The electron energy spread of the merged-beams measurement is reduced to $500\text{ }\text{ }\ensuremath{\mu}\mathrm{eV}$ by using a cryogenic GaAs photocathode. This and a previous cold-$\mathrm{H}_{3}{}^{+}$ measurement jointly confirm the capability of ion storage rings, with suitable ion sources, to store and investigate $\mathrm{H}_{3}{}^{+}$ in the two lowest, $(J,G)=(1,1)$ and $(1,0)$ rotational states prevailing also in cold interstellar matter. The use of para-${\mathrm{H}}_{2}$ in the ion source, expected to enhance para-$\mathrm{H}_{3}{}^{+}$ in the stored ion beam, is found to increase the DR rate coefficient at meV electron energies.

110 citations

Journal ArticleDOI
TL;DR: Surprisingly, it is found that an additional water molecule acts to promote all the elementary steps of the dissociation process and subsequent hydrogen migration, revealing the important assisting role of a water molecule in its own Dissociation process on a metal oxide.
Abstract: Transition metal oxides show great promise as Earth-abundant catalysts for the oxygen evolution reaction in electrochemical water splitting. However, progress in the development of highly active oxide nanostructures is hampered by a lack of knowledge of the location and nature of the active sites. Here we show, through atom-resolved scanning tunnelling microscopy, X-ray spectroscopy and computational modelling, how hydroxyls form from water dissociation at under coordinated cobalt edge sites of cobalt oxide nanoislands. Surprisingly, we find that an additional water molecule acts to promote all the elementary steps of the dissociation process and subsequent hydrogen migration, revealing the important assisting role of a water molecule in its own dissociation process on a metal oxide. Inspired by the experimental findings, we theoretically model the oxygen evolution reaction activity of cobalt oxide nanoislands and show that the nanoparticle metal edges also display favourable adsorption energetics for water oxidation under electrochemical conditions. Earth abundant transition metal oxides show great promise as catalysts for the oxygen evolution reaction. Here, the authors reveal a self-assisted water dissociation mechanism and favourable theoretical adsorption energetics for water oxidation at the edge sites of cobalt oxide nano-islands.

108 citations

Journal ArticleDOI
TL;DR: Photoabsorption studies of 11-cis and all-trans Schiff-base retinal chromophore cations in the gas phase have been performed at the electrostatic ion storage ring in Aarhus and a second "dark" excited state (S2) just below 400 nm is reported for the first time.
Abstract: Photoabsorption studies of 11-cis and all-trans Schiff-base retinal chromophore cations in the gas phase have been performed at the electrostatic ion storage ring in Aarhus. A broad absorption band due to the optically allowed excitation to the first electronically excited singlet state (${S}_{1}$) is observed at around 600 nm. A second ``dark'' excited state (${S}_{2}$) just below 400 nm is reported for the first time. It is located $\ensuremath{\sim}1.2\text{ }\text{ }\mathrm{eV}$ above ${S}_{1}$ for both chromophores. The ${S}_{2}$ state was not visible in a solution measurement where only one highly blueshifted absorption band corresponding to the first excited state was visible. Knowledge of the position of the excited states in retinal is essential for the understanding of the fast photoisomerization in, for example, visual pigments.

102 citations

Journal ArticleDOI
04 Jun 2015-ACS Nano
TL;DR: STM imaging on this inverse model catalyst revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction.
Abstract: Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO–Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO–Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM result...

65 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The nature and dynamics of the singlet excited electronic states created in nucleic acids and their constituents by UV light are reviewed, finding that these states are highly stable to photochemical decay, perhaps as a result of selection pressure during a long period of molecular evolution.
Abstract: The scope of this review is the nature and dynamics of the singlet excited electronic states created in nucleic acids and their constituents by UV light. Interest in the UV photochemistry of nucleic acids has long been the motivation for photophysical studies of the excited states, because these states are at the beginning of the complex chain of events that culminates in photodamage. UV-induced damage to DNA has profound biological consequences, including photocarcinogenesis, a growing human health problem.1-3 Sunlight, which is essential for life on earth, contains significant amounts of harmful UV (λ < 400 nm) radiation. These solar UV photons constitute one of the most ubiquitous and potent environmental carcinogens. This extraterrestrial threat is impressive for its long history; photodamage is as old as life itself. The genomic information encoded by these biopolymers has been under photochemical attack for billions of years. It is not surprising then that the excited states of the nucleic acid bases (see Chart 1), the most important UV chromophores of nucleic acids, are highly stable to photochemical decay, perhaps as a result of selection pressure during a long period of molecular evolution. This photostability is due to remarkably rapid decay pathways for electronic energy, which are only now coming into focus through femtosecond laser spectroscopy. The recently completed map of the human genome and the ever-expanding crystallographic database of nucleic acid structures are two examples that illustrate the richly detailed information currently available about the static properties of nucleic acids. In contrast, much less is known about the dynamics of these macromolecules. This is particularly true of the dynamics of the excited states that play a critical role in DNA photodamage. Efforts to study nucleic acids by time-resolved spectroscopy have been stymied by the apparent lack of suitable fluorophores. In contrast, dynamical spectroscopy of proteins has flourished thanks to intrinsically fluorescent amino acids such as tryptophan, tyrosine, and phenylalanine.4 The primary UVabsorbing constituents of nucleic acids, the nucleic acid bases, have vanishingly small fluorescence quantum yields under physiological conditions of temperature and pH.5 In fact, the bases were frequently described as “nonfluorescent” in the early literature. * To whom correspondence should be addressed. E-mail: kohler@ chemistry.ohio-state.edu. Phone: (614) 688-3944. Fax: (614) 2921685. 1977 Chem. Rev. 2004, 104, 1977−2019

1,115 citations

Journal ArticleDOI
TL;DR: In this article, a review is given of an experimentally falsifiable phenomenological proposal, known as continuous spontaneous collapse, which is a stochastic nonlinear modification of the Schrodinger equation.
Abstract: Quantum mechanics is an extremely successful theory that agrees with every experimental test. However, the principle of linear superposition, a central tenet of the theory, apparently contradicts a commonplace observation: macroscopic objects are never found in a linear superposition of position states. Moreover, the theory does not explain why during a quantum measurement, deterministic evolution is replaced by probabilistic evolution, whose random outcomes obey the Born probability rule. In this article a review is given of an experimentally falsifiable phenomenological proposal, known as continuous spontaneous collapse: a stochastic nonlinear modification of the Schr\"odinger equation, which resolves these problems, while giving the same experimental results as quantum theory in the microscopic regime. Two underlying theories for this phenomenology are reviewed: trace dynamics and gravity-induced collapse. As the macroscopic scale is approached, predictions of this proposal begin to differ appreciably from those of quantum theory and are being confronted by ongoing laboratory experiments that include molecular interferometry and optomechanics. These experiments, which test the validity of linear superposition for large systems, are reviewed here, and their technical challenges, current results, and future prospects summarized. It is likely that over the next two decades or so, these experiments can verify or rule out the proposed stochastic modification of quantum theory.

901 citations

01 Jan 2010
TL;DR: The authors studies the impact of ambiguity and ambiguity aversion on equilibrium asset prices and portfolio holdings in competitive financial markets, and finds that attitudes toward ambiguity are heterogeneous across the population, just as attitudes toward risk are heterogenous across the populations, but that heterogeneity of attitudes towards ambiguity has different implications than heterogeneity of attitude toward risk, and that investors who have cognitive biases do not affect prices because they are infra-marginal.
Abstract: This paper studies the impact of ambiguity and ambiguity aversion on equilibrium asset prices and portfolio holdings in competitive financial markets. It argues that attitudes toward ambiguity are heterogeneous across the population, just as attitudes toward risk are heterogeneous across the population, but that heterogeneity of attitudes toward ambiguity has different implications than heterogeneity of attitudes toward risk. In particular, when some state probabilities are not known, agents who are sufficiently ambiguity averse find open sets of prices for which they refuse to hold an ambiguous portfolio. This suggests a different cross-section of portfolio choices, a wider range of state price/probability ratios and different rankings of state price/probability ratios than would be predicted if state probabilities were known. Experiments confirm all of these suggestions. Our findings contradict the claim that investors who have cognitive biases do not affect prices because they are infra-marginal: ambiguity averse investors have an indirect effect on prices because they change the per-capita amount of risk that is to be shared among the marginal investors. Our experimental data also suggest a positive correlation between risk aversion and ambiguity aversion that might explain the “value effect” in historical data.

877 citations

Journal ArticleDOI
TL;DR: Details of the photochemistry of three important molecules (oxygen, water, methanol) on the model TiO2 surfaces are presented, in an attempt to unravel the relationship between charge/energy transfer and bond breaking/forming inTiO2 photocatalysis.
Abstract: Photocatalysis has been widely applied in various areas, such as solar cells, water splitting, and pollutant degradation. Therefore, the photochemical mechanisms and basic principles of photocatalysis, especially TiO2 photocatalysis, have been extensively investigated by various surface science methods in the last decade, aiming to provide important information for TiO2 photocatalysis under real environmental conditions. Recent progress that provides fundamental insights into TiO2 photocatalysis at a molecular level is highlighted. Insights into the structures of TiO2 and the basic principles of TiO2 photocatalysis are discussed first, which provides the basic concepts of TiO2 photocatalysis. Following this, details of the photochemistry of three important molecules (oxygen, water, methanol) on the model TiO2 surfaces are presented, in an attempt to unravel the relationship between charge/energy transfer and bond breaking/forming in TiO2 photocatalysis. Lastly, challenges and opportunities of the mechanistic studies of TiO2 photocatalysis at the molecular level are discussed briefly, as well as possible photocatalysis models.

832 citations

Journal ArticleDOI
TL;DR: It is reported that a commercially available TiO2 with a large number of surface oxygen vacancies, when photoirradiated by UV light in pure water with N2, successfully produces NH3.
Abstract: Ammonia (NH3) is an essential chemical in modern society. It is currently manufactured by the Haber–Bosch process using H2 and N2 under extremely high-pressure (>200 bar) and high-temperature (>673 K) conditions. Photocatalytic NH3 production from water and N2 at atmospheric pressure and room temperature is ideal. Several semiconductor photocatalysts have been proposed, but all suffer from low efficiency. Here we report that a commercially available TiO2 with a large number of surface oxygen vacancies, when photoirradiated by UV light in pure water with N2, successfully produces NH3. The active sites for N2 reduction are the Ti3+ species on the oxygen vacancies. These species act as adsorption sites for N2 and trapping sites for the photoformed conduction band electrons. These properties therefore promote efficient reduction of N2 to NH3. The solar-to-chemical energy conversion efficiency is 0.02%, which is the highest efficiency among the early reported photocatalytic systems. This noble-metal-free TiO2 ...

628 citations