scispace - formally typeset
Search or ask a question
Author

Luyi Chen

Bio: Luyi Chen is an academic researcher from Sun Yat-sen University. The author has contributed to research in topics: Materials science & Adsorption. The author has an hindex of 12, co-authored 30 publications receiving 1166 citations. Previous affiliations of Luyi Chen include Huaqiao University & South China Normal University.

Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that high surface area of up to 3,022 m2 g−1 can be achieved for hollow carbon nanospheres with an outer diameter of 69 nm by a simple carbonization procedure with carefully selected carbon precursors and carbonization conditions.
Abstract: Well-defined, large surface area nanostructures are promising functional materials but can be difficult to fabricate. Here the authors show how to prepare ultrahigh-surface-area hollow carbon nanospheres, via a controlled carbonization route, and assess their organic vapour adsorption and electrochemical performance.

562 citations

Journal ArticleDOI
TL;DR: Experimental and theoretical results reveal that stable Co nanoparticles, elaborately encapsulated by N-doped graphitic carbon, can work synergistically with N heteroatoms to reserve the soluble polysulfides and promote the redox reaction kinetics of sulfur cathodes.
Abstract: Lithium-sulfur (Li-S) batteries, based on the redox reaction between elemental sulfur and lithium metal, have attracted great interest because of their inherently high theoretical energy density. However, the severe polysulfide shuttle effect and sluggish reaction kinetics in sulfur cathodes, as well as dendrite growth in lithium-metal anodes are great obstacles for their practical application. Herein, a two-in-one approach with superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets (Co/N-PCNSs) as stable hosts for both elemental sulfur and metallic lithium to improve their performance simultaneously is reported. Experimental and theoretical results reveal that stable Co nanoparticles, elaborately encapsulated by N-doped graphitic carbon, can work synergistically with N heteroatoms to reserve the soluble polysulfides and promote the redox reaction kinetics of sulfur cathodes. Moreover, the high-surface-area pore structure and the Co-enhanced lithiophilic N heteroatoms in Co/N-PCNSs can regulate metallic lithium plating and successfully suppress lithium dendrite growth in the anodes. As a result, a full lithium-sulfur cell constructed with Co/N-PCNSs as two-in-one hosts demonstrates excellent capacity retention with stable Coulombic efficiency.

323 citations

Journal ArticleDOI
TL;DR: A new class of nitrogen-doped ordered mesoporous carbon/silica (N-OMC/SiO2) nanocomposites was successfully fabricated via a multi-constituent co-assembly strategy and demonstrated high capacity, good cycling and excellent rate properties.
Abstract: A new class of nitrogen-doped ordered mesoporous carbon/silica (N-OMC/SiO2) nanocomposites was successfully fabricated via a multi-constituent co-assembly strategy. The N-OMC/SiO2 nanocomposite presented a unique interpenetrating carbon/silica structure whose carbon/silica interface is highly uniform, and thus demonstrated high capacity, good cycling and excellent rate properties.

84 citations

Journal ArticleDOI
TL;DR: This work demonstrates a facile and versatile method to fabricate water-dispersible, pH/temperature responsive and readily carbonizable hairy microporous polymeric nanospheres based on combination of the hyper-cross-linking chemistry with the surface-initiated atom transfer radical polymerization (SI-ATRP).
Abstract: Multifunctionalization of microporous polymers is highly desirable but remains a significant challenge, considering that the current microporous polymers are generally hydrophobic and nonresponsive to different environmental stimuli and difficult to be carbonized without damage of their well-defined nanomorphology. Herein, we demonstrate a facile and versatile method to fabricate water-dispersible, pH/temperature responsive and readily carbonizable hairy microporous polymeric nanospheres based on combination of the hyper-cross-linking chemistry with the surface-initiated atom transfer radical polymerization (SI-ATRP). The hyper-cross-linking creates a highly microporous core, whereas the SI-ATRP provides diverse functionalities by surface grafting of hairy functional blocks. The as-prepared materials present multifunctional properties, including sensitive response to pH/temperature, high adsorption capacity toward adsorbates from aqueous solution, and valuable transformation into well-defined microporous ...

81 citations

Journal ArticleDOI
TL;DR: Super-hierarchical carbons with a unique carbonaceous hybrid nanotubes-interconnected porous network were fabricated by utilizing well-defined carbon nanotube@polystyrene bottlebrushes as building blocks.
Abstract: Advances in the performances of many modern materials fundamentally depend upon the exploitation of new micro/nanostructures. Therefore, ingenious design of hierarchical structures through the mimicking of natural systems is of increasing importance. Currently, there is an urgent need for creation of multidimensional carbonaceous structures by integrating a customized hierarchical pore architecture and hybrid carbon framework. Here we report the pioneering fabrication of novel super-hierarchical carbons with a unique carbonaceous hybrid nanotube-interconnected porous network structure by utilizing well-defined carbon nanotube@polystyrene bottlebrushes as building blocks. Hypercrosslinking of such heterogeneous core-shell structured building blocks not only allows for constructing amorphous microporous carbon shells on the surface of graphitic carbon nanotube cores, but also leads to formation of covalently interconnected nanoscale networks. Benefiting from such a well-orchestrated structure, these super-hierarchical carbons exhibit good electrochemical performances. Our findings may open up a new avenue for fabrication of unique and unusual functional carbon materials which possess well-orchestrated structural hierarchy and thus generate valuable breakthroughs in many applications including energy, adsorption, separation, catalysis and medicine.

59 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The unique properties and niche applications of the hollow structures in diverse fields, including micro-/nanocontainers and reactors, optical properties and applications, magnetic properties, energy storage, catalysis, biomedical applications, environmental remediation, and sensors are discussed.
Abstract: In this Review, we aim to provide an updated summary of the research related to hollow micro- and nanostructures, covering both their synthesis and their applications. After a brief introduction to the definition and classification of the hollow micro-/nanostructures, we discuss various synthetic strategies that can be grouped into three major categories, including hard templating, soft templating, and self-templating synthesis. For both hard and soft templating strategies, we focus on how different types of templates are generated and then used for creating hollow structures. At the end of each section, the structural and morphological control over the product is discussed. For the self-templating strategy, we survey a number of unconventional synthetic methods, such as surface-protected etching, Ostwald ripening, the Kirkendall effect, and galvanic replacement. We then discuss the unique properties and niche applications of the hollow structures in diverse fields, including micro-/nanocontainers and rea...

1,135 citations

Journal ArticleDOI
TL;DR: MnO2-based materials have been intensively investigated for use in pseudocapacitors due to their high theoretical specific capacitance, good chemical and thermal stability, natural abundance, environmental benignity and low cost as mentioned in this paper.
Abstract: MnO2-based materials have been intensively investigated for use in pseudocapacitors due to their high theoretical specific capacitance, good chemical and thermal stability, natural abundance, environmental benignity and low cost. In this review, several main factors that affect the electrochemical properties of MnO2-based electrodes are presented. Various strategic design and synthetic methods of MnO2-based electrode materials for enhanced electrochemical performance are highlighted and summarized. Finally, the challenges and future directions toward the development of MnO2-based nanostructured electrode materials for high performance supercapacitors (SCs) are discussed.

750 citations

Journal ArticleDOI
TL;DR: The basic synthetic principles and strategies of HCPs are described, but also the advancements in the structural and morphological study as well as the frontiers of potential applications in energy and environmental fields such as gas storage, carbon capture, removal of pollutants, molecular separation, catalysis, drug delivery, sensing etc are described.
Abstract: Hypercrosslinked polymers (HCPs) are a series of permanent microporous polymer materials initially reported by Davankov, and have received an increasing level of research interest. In recent years, HCPs have experienced rapid growth due to their remarkable advantages such as diverse synthetic methods, easy functionalization, high surface area, low cost reagents and mild operating conditions. Judicious selection of monomers, appropriate length crosslinkers and optimized reaction conditions yielded a well-developed polymer framework with an adjusted porous topology. Post fabrication of the as developed network facilitates the incorporation of various chemical functionalities that may lead to interesting properties and enhance the selection toward a specific application. To date, numerous HCPs have been prepared by post-crosslinking polystyrene-based precursors, one-step self-polycondensation or external crosslinking strategies. The advent of these methodologies has prompted researchers to construct well-defined porous polymer networks with customized micromorphology and functionalities. In this review, we describe not only the basic synthetic principles and strategies of HCPs, but also the advancements in the structural and morphological study as well as the frontiers of potential applications in energy and environmental fields such as gas storage, carbon capture, removal of pollutants, molecular separation, catalysis, drug delivery, sensing etc.

695 citations