scispace - formally typeset
Search or ask a question
Author

Luyuan Zhang

Bio: Luyuan Zhang is an academic researcher. The author has contributed to research in topics: Oxide & Potassium-ion battery. The author has an hindex of 1, co-authored 2 publications receiving 1725 citations.

Papers
More filters
Journal ArticleDOI
Cheng-Xiang Wang1, Longwei Yin, Luyuan Zhang, Dong Xiang, Rui Gao 
15 Mar 2010-Sensors
TL;DR: A brief review of changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors: chemical components, surface-modification and microstructures of sensing layers, temperature and humidity.
Abstract: Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above.

2,122 citations

Patent
25 Sep 2020
TL;DR: In this paper, a preparation method of a MoS2/Ti3C2 MXene composite material for a high-performance potassium ion battery is provided, which comprises the following steps: dispersing multiple layers of et.
Abstract: The invention provides a preparation method of a MoS2/Ti3C2 MXene composite material for a high-performance potassium ion battery. The method comprises the following steps: dispersing multiple layersof et-Ti3C2 MXene nanosheets in an intercalator solution, reacting at room temperature, centrifuging, washing and drying to obtain in-Ti3C2 MXene nanosheets; under ultrasonic and stirring conditions,adding a mixed solution of a molybdenum precursor and a sulfur precursor into an in-Ti3C2 MXene nanosheet dispersion liquid, and carrying out high-temperature reaction on the obtained mixed liquid; and after the reaction is finished, centrifuging, washing and drying to obtain the material. The composite material disclosed by the invention overcomes the defects of a single material, and solves theproblems of rapid attenuation of reversible capacity and poor cycling stability caused by huge volume expansion and crushing of an electrode in a K+ repeated intercalation/deintercalation process, sothat the cycling stability and the specific capacity of the potassium ion battery are remarkably improved.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the dominant electronic and chemical mechanisms that influence the performance of metal-oxide-based resistive-type gas sensors are discussed, including p-n and n-n potential barrier manipulation, n-p-n response type inversions, spillover effects, synergistic catalytic behavior, and microstructure enhancement.
Abstract: Metal oxide-based resistive-type gas sensors are solid-state devices which are widely used in a number of applications from health and safety to energy efficiency and emission control. Nanomaterials such as nanowires, nanorods, and nanoparticles have dominated the research focus in this field due to their large number of surface sites facilitating surface reactions. Previous studies have shown that incorporating two or more metal oxides to form a heterojunction interface can have drastic effects on gas sensor performance, especially the selectivity. Recently, these effects have been amplified by designing heterojunctions on the nano-scale. These designs have evolved from mixed commercial powders and bi-layer films to finely-tuned core–shell and hierarchical brush-like nanocomposites. This review details the various morphological classes currently available for nanostructured metal-oxide based heterojunctions and then presents the dominant electronic and chemical mechanisms that influence the performance of these materials as resistive-type gas sensors. Mechanisms explored include p–n and n–n potential barrier manipulation, n–p–n response type inversions, spill-over effects, synergistic catalytic behavior, and microstructure enhancement. Tables are presented summarizing these works specifically for SnO2, ZnO, TiO2, In2O3, Fe2O3, MoO3, Co3O4, and CdO-based nanocomposites. Recent developments are highlighted and likely future trends are explored.

1,392 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of semiconductor metal oxide (SMO) gas sensors is provided for a detailed comparison of SMO gas sensors with other gas sensors, especially for ammonia gas sensing.
Abstract: This review paper encompasses a detailed study of semiconductor metal oxide (SMO) gas sensors. It provides for a detailed comparison of SMO gas sensors with other gas sensors, especially for ammonia gas sensing. Different parameters which affect the performance (sensitivity, selectivity and stability) of SMO gas sensors are discussed here under. This paper also gives an insight about the dopant or impurity induced variations in the SMO materials used for gas sensing. It is concluded that dopants enhance the properties of SMOs for gas sensing applications by changing their microstructure and morphology, activation energy, electronic structure or band gap of the metal oxides. In some cases, dopants create defects in SMOs by generating oxygen vacancy or by forming solid solutions. These defects enhance the gas sensing properties. Different nanostructures (nanowires, nanotubes, heterojunctions), other than nanopowders have also been studied in this review. At the end, examples of SMOs are given to illustrate the potential use of different SMO materials for gas sensing.

1,296 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent synthetic methods along with associated synthesis mechanisms, characterization, fundamental properties, and promising applications of Cupric oxide (CuO) nanostructures is presented in this article.

1,030 citations

Journal ArticleDOI
16 Jul 2012-Sensors
TL;DR: This paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches.
Abstract: Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches.

1,018 citations

Journal ArticleDOI
27 Feb 2012-Sensors
TL;DR: The gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article and the effect of doping is summarized and the perspectives ofMetal oxide gas sensor are given.
Abstract: Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion Besides, doping is also an effective method to decrease particle size and improve gas sensing properties Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given

915 citations