scispace - formally typeset
Search or ask a question
Author

Lynn M. Schriml

Bio: Lynn M. Schriml is an academic researcher from University of Maryland, Baltimore. The author has contributed to research in topics: Genome & Metagenomics. The author has an hindex of 37, co-authored 94 publications receiving 33751 citations. Previous affiliations of Lynn M. Schriml include University of Maryland, College Park & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
TL;DR: In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI’s website.
Abstract: In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's website. NCBI resources include Entrez, PubMed, PubMed Central, LocusLink, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SARS Coronavirus Resource, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD) and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov.

9,604 citations

Journal ArticleDOI
Curtis Huttenhower1, Curtis Huttenhower2, Dirk Gevers2, Rob Knight3  +250 moreInstitutions (42)
14 Jun 2012-Nature
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Abstract: The Human Microbiome Project Consortium reports the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome.

8,410 citations

Journal Article
TL;DR: The Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far, finding the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals.
Abstract: Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.

6,350 citations

Journal ArticleDOI
Barbara A. Methé1, Karen E. Nelson1, Mihai Pop2, Heather Huot Creasy3  +250 moreInstitutions (42)
14 Jun 2012-Nature
TL;DR: The Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomics data available to the scientific community as mentioned in this paper.
Abstract: A variety of microbial communities and their genes (microbiome) exist throughout the human body, playing fundamental roles in human health and disease. The NIH funded Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 to 18 body sites up to three times, which to date, have generated 5,177 microbial taxonomic profiles from 16S rRNA genes and over 3.5 Tb of metagenomic sequence. In parallel, approximately 800 human-associated reference genomes have been sequenced. Collectively, these data represent the largest resource to date describing the abundance and variety of the human microbiome, while providing a platform for current and future studies.

2,172 citations

Journal ArticleDOI
Yasushi Okazaki, Masaaki Furuno, Takeya Kasukawa1, Jun Adachi, Hidemasa Bono, S. Kondo, Itoshi Nikaido2, Naoki Osato, Rintaro Saito3, Harukazu Suzuki, Itaru Yamanaka, H. Kiyosawa2, Ken Yagi, Yasuhiro Tomaru4, Yuki Hasegawa2, A. Nogami2, Christian Schönbach, Takashi Gojobori, Richard M. Baldarelli, David P. Hill, Carol J. Bult, David A. Hume5, John Quackenbush6, Lynn M. Schriml7, Alexander Kanapin, Hideo Matsuda8, Serge Batalov9, Kirk W. Beisel10, Judith A. Blake, Dirck W. Bradt, Vladimir Brusic, Cyrus Chothia11, Lori E. Corbani, S. Cousins, Emiliano Dalla, Tommaso A. Dragani, Colin F. Fletcher9, Colin F. Fletcher12, Alistair R. R. Forrest5, K. S. Frazer13, Terry Gaasterland14, Manuela Gariboldi, Carmela Gissi15, Adam Godzik16, Julian Gough11, Sean M. Grimmond5, Stefano Gustincich17, Nobutaka Hirokawa18, Ian J. Jackson19, Erich D. Jarvis20, Akio Kanai3, Hideya Kawaji1, Hideya Kawaji8, Yuka Imamura Kawasawa21, Rafal M. Kedzierski21, Benjamin L. King, Akihiko Konagaya, Igor V. Kurochkin, Yong-Hwan Lee6, Boris Lenhard22, Paul A. Lyons23, Donna Maglott7, Lois J. Maltais, Luigi Marchionni, Louise M. McKenzie, Harukata Miki18, Takeshi Nagashima, Koji Numata3, Toshihisa Okido, William J. Pavan7, Geo Pertea6, Graziano Pesole15, Nikolai Petrovsky24, Ramesh S. Pillai, Joan Pontius7, D. Qi, Sridhar Ramachandran, Timothy Ravasi5, Jonathan C. Reed16, Deborah J Reed, Jeffrey G. Reid, Brian Z. Ring, M. Ringwald, Albin Sandelin22, Claudio Schneider, Colin A. Semple19, Mitsutoshi Setou18, K. Shimada25, Razvan Sultana6, Yoichi Takenaka8, Martin S. Taylor19, Rohan D. Teasdale5, Masaru Tomita3, Roberto Verardo, Lukas Wagner7, Claes Wahlestedt22, Y. Wang6, Yoshiki Watanabe25, Christine A. Wells5, Laurens G. Wilming26, Anthony Wynshaw-Boris27, Masashi Yanagisawa21, Ivana V. Yang6, L. Yang, Zheng Yuan5, Mihaela Zavolan14, Yunhui Zhu, Anne M. Zimmer28, Piero Carninci, N. Hayatsu, Tomoko Hirozane-Kishikawa, Hideaki Konno, M. Nakamura, Naoko Sakazume, K. Sato4, Toshiyuki Shiraki, Kazunori Waki, Jun Kawai, Katsunori Aizawa, Takahiro Arakawa, S. Fukuda, A. Hara, W. Hashizume, K. Imotani, Y. Ishii, Masayoshi Itoh, Ikuko Kagawa, A. Miyazaki, K. Sakai, D. Sasaki, K. Shibata, Akira Shinagawa, Ayako Yasunishi, Masayasu Yoshino, Robert H. Waterston29, Eric S. Lander30, Jane Rogers26, Ewan Birney, Yoshihide Hayashizaki 
05 Dec 2002-Nature
TL;DR: The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
Abstract: Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences These are clustered into 33,409 'transcriptional units', contributing 901% of a newly established mouse transcriptome database Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome 41% of all transcriptional units showed evidence of alternative splicing In protein-coding transcripts, 79% of splice variations altered the protein product Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics

1,663 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The RDP Classifier can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes, and the majority of the classification errors appear to be due to anomalies in the current taxonomies.
Abstract: The Ribosomal Database Project (RDP) Classifier, a naive Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (≥95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/.

16,048 citations

Journal ArticleDOI
TL;DR: The open-source software package DADA2 for modeling and correcting Illumina-sequenced amplicon errors is presented, revealing a diversity of previously undetected Lactobacillus crispatus variants.
Abstract: We present the open-source software package DADA2 for modeling and correcting Illumina-sequenced amplicon errors (https://github.com/benjjneb/dada2). DADA2 infers sample sequences exactly and resolves differences of as little as 1 nucleotide. In several mock communities, DADA2 identified more real variants and output fewer spurious sequences than other methods. We applied DADA2 to vaginal samples from a cohort of pregnant women, revealing a diversity of previously undetected Lactobacillus crispatus variants.

14,505 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations

Journal ArticleDOI
TL;DR: The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% correct bases commonly reported by other methods.
Abstract: Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.

11,329 citations