scispace - formally typeset
Search or ask a question
Author

Lynne R. Harris

Bio: Lynne R. Harris is an academic researcher. The author has contributed to research in topics: Daphnia magna & Bioaccumulation. The author has an hindex of 2, co-authored 2 publications receiving 1625 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Bisphenol A (CAS 85-05-7) is "slightly to moderately" toxic and has low potential for bioaccumulation in aquatic organisms, with most levels nondetected.

1,601 citations

Journal ArticleDOI
TL;DR: All surface water concentrations from this and other studies were less than the freshwater predicted no effect concentration (PNEC) of 64 micrograms/l, suggesting that BPA discharges from manufacturing and processing facilities to surface water do not pose an environmental concern.

145 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology is presented.
Abstract: Thereisgrowinginterestinthepossiblehealththreatposedbyendocrine-disruptingchemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor , retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. (Endocrine Reviews 30: 293–342, 2009)

3,576 citations

Journal ArticleDOI
TL;DR: It is likely, but requiring further confirmation, that adult exposure to BPA affects the brain, the female reproductive system, and the immune system and that developmental effects occur in theFemale reproductive system.

1,065 citations

Journal ArticleDOI
TL;DR: This study provides the first reference range of human internal dose levels of BPA and NP in a demographically diverse human population and further research is needed to determine the best urinary biomarker(s) to assess exposure to NP.
Abstract: Bisphenol A (BPA) is used to manufacture polycarbonate plastic and epoxy resins, which are used in baby bottles, as protective coatings on food containers, and for composites and sealants in dentistry. 4-Nonylphenol (NP) is used to make nonylphenol ethoxylates, nonionic surfactants applied as emulsifying, wetting, dispersing, or stabilizing agents in industrial, agricultural, and domestic consumer products. The potential for human exposure to BPA and NP is high because of their widespread use. We measured BPA and NP in archived urine samples from a reference population of 394 adults in the United States using isotope-dilution gas chromatography/mass spectrometry. The concentration ranges of BPA and NP were similar to those observed in other human populations. BPA was detected in 95% of the samples examined at concentrations ≥0.1 μg/L urine; the geometric mean and median concentrations were 1.33 μg/L (1.36 μg/g creatinine) and 1.28 μg/L (1.32 μg/g creatinine), respectively; the 95th percentile concentration was 5.18 μg/L (7.95 μg/g creatinine). NP was detected in 51% of the samples examined ≥0.1 μg/L. The median and 95th percentile concentrations were < 0.1 μg/L and 1.57 μg/L (1.39 μg/g creatinine), respectively. The frequent detection of BPA suggests widespread exposure to this compound in residents of the United States. The lower frequency of detection of NP than of BPA could be explained by a lower exposure of humans to NP, by different pharmacokinetic factors (i.e., absorption, distribution, metabolism, elimination), by the fact that 4-n-nonylphenol—the measured NP isomer—represents a small percentage of the NP used in commercial mixtures, or a combination of all of the above. Additional research is needed to determine the best urinary biomarker(s) to assess exposure to NP. Despite the sample population’s nonrepresentativeness of the U.S. population (although sample weights were used to improve the extent to which the results represent the U.S. population) and relatively small size, this study provides the first reference range of human internal dose levels of BPA and NP in a demographically diverse human population.

969 citations

Journal ArticleDOI
TL;DR: Very high concentrations of BPA and phthalates were confirmed in waste dump water and compost water samples as well as in the liquid manure samples.

920 citations

Journal ArticleDOI
TL;DR: Due to potential human health risks from long-term exposure to BPA, body burden of the contaminant should be monitored.

882 citations