scispace - formally typeset
Search or ask a question
Author

Lyubov G. Bulusheva

Other affiliations: Tomsk State University
Bio: Lyubov G. Bulusheva is an academic researcher from Novosibirsk State University. The author has contributed to research in topics: Carbon nanotube & Graphene. The author has an hindex of 32, co-authored 190 publications receiving 5101 citations. Previous affiliations of Lyubov G. Bulusheva include Tomsk State University.


Papers
More filters
Journal ArticleDOI
20 Dec 2010-Small
TL;DR: F fluorographene is a high-quality insulator that inherits the mechanical strength of graphene, exhibiting a Young's modulus of 100 N m(-1) and sustaining strains of 15%.
Abstract: A stoichiometric derivative of graphene with a fluorine atom attached to each carbon is reported Raman, optical, structural, micromechanical, and transport studies show that the material is qualitatively different from the known graphene-based nonstoichiometric derivatives Fluorographene is a high-quality insulator (resistivity >10(12) Omega) with an optical gap of 3 eV It inherits the mechanical strength of graphene, exhibiting a Young's modulus of 100 N m(-1) and sustaining strains of 15% Fluorographene is inert and stable up to 400 degrees C even in air, similar to Teflon

1,176 citations

Journal ArticleDOI
TL;DR: In this paper, a stoichiometric derivative of graphene with a fluorine atom attached to each carbon was reported, which is inert and stable up to 400C even in air, similar to Teflon.
Abstract: We report a stoichiometric derivative of graphene with a fluorine atom attached to each carbon. Raman, optical, structural, micromechanical and transport studies show that the material is qualitatively different from the known graphene-based nonstoichiometric derivatives. Fluorographene is a high-quality insulator (resistivity >10^12 Ohm per square) with an optical gap of 3 eV. It inherits the mechanical strength of graphene, exhibiting Young's modulus of 100 N/m and sustaining strains of 15%. Fluorographene is inert and stable up to 400C even in air, similar to Teflon.

869 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the decomposition of the acid proceeds more rapidly on single metal atoms by anchoring Pt-group metals onto mesoporous N-functionalized carbon nanofibers.
Abstract: Formic acid is a valuable chemical derived from biomass, as it has a high hydrogen-storage capacity and appears to be an attractive source of hydrogen for various applications. Hydrogen production via formic acid decomposition is often based on using supported catalysts with Pt-group metal nanoparticles. In the present paper, we show that the decomposition of the acid proceeds more rapidly on single metal atoms (by up to 1 order of magnitude). These atoms can be obtained by rather simple means through anchoring Pt-group metals onto mesoporous N-functionalized carbon nanofibers. A thorough evaluation of the structure of the active site by aberration-corrected scanning transmission electron microscopy (ac-STEM) in high-angle annular dark field (HAADF) mode and by CO chemisorption, X-ray photoelectron spectroscopy (XPS), and quantum-chemical calculations reveals that the metal atom is coordinated by a pair of pyridinic nitrogen atoms at the edge of graphene sheets. The chelate binding provides an ionic/elect...

242 citations

Journal ArticleDOI
Abstract: Single-site heterogeneous catalysis with isolated Pd atoms was reported earlier, mainly for oxidation reactions and for Pd catalysts supported on oxide surfaces. In the present work, we show that single Pd atoms on nitrogen-functionalized mesoporous carbon, observed by aberration-corrected scanning transmission electron microscopy (ac STEM), contribute significantly to the catalytic activity for hydrogen production from vapor-phase formic acid decomposition, providing an increase by 2–3 times in comparison to Pd catalysts supported on nitrogen-free carbon or unsupported Pd powder. Some gain in selectivity was also achieved. According to X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) studies after ex situ reduction in hydrogen at 573 K, these species exist in a Pd2+ state coordinated by nitrogen species of the support. Extended density functional theory (DFT) calculations confirm that an isolated Pd atom can be the active site for the reaction, giving decompos...

222 citations

Journal ArticleDOI
TL;DR: In this paper, the structure of CNTs and nitrogen-doped carbon (CNx) nanotubes was compared using first and second-order Raman spectra, and the disorder-induced D band was found to up-shift with increase of the acetonitrile fraction.
Abstract: Multi-walled carbon nanotubes (CNTs) and nitrogen-doped carbon (CNx) nanotubes have been synthesized by the aerosol-assisted chemical vapour deposition (CVD) method. The samples were prepared from toluene and acetonitrile taken in different proportion. The structure of CNTs and CNx nanotubes was compared using first- and second-order Raman spectra. The disorder-induced D band was found to up-shift with increase of the acetonitrile fraction. The I-D/I-G and I-G/I-G ratios showed the opposite dependence on the doping level of CNTs. Both kinds of the substitute nitrogen: graphitic-like and pyridinic-like contribute to the disorder in CNx nanotube layers. [GRAPHICS] The first- and second-order Raman spectra of CNTs produced from toluene and CNx nanotubes produced from acetonitrile. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

167 citations


Cited by
More filters
Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Abstract: Fabrication techniques developed for graphene research allow the disassembly of many layered crystals (so-called van der Waals materials) into individual atomic planes and their reassembly into designer heterostructures, which reveal new properties and phenomena. Andre Geim and Irina Grigorieva offer a forward-looking review of the potential of layering two-dimensional materials into novel heterostructures held together by weak van der Waals interactions. Dozens of these one-atom- or one-molecule-thick crystals are known. Graphene has already been well studied but others, such as monolayers of hexagonal boron nitride, MoS2, WSe2, graphane, fluorographene, mica and silicene are attracting increasing interest. There are many other monolayers yet to be examined of course, and the possibility of combining graphene with other crystals adds even further options, offering exciting new opportunities for scientific exploration and technological innovation. Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

8,162 citations

Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Abstract: Recent years have witnessed many breakthroughs in research on graphene (the first two-dimensional atomic crystal) as well as a significant advance in the mass production of this material. This one-atom-thick fabric of carbon uniquely combines extreme mechanical strength, exceptionally high electronic and thermal conductivities, impermeability to gases, as well as many other supreme properties, all of which make it highly attractive for numerous applications. Here we review recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.

7,987 citations

Journal ArticleDOI
TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Abstract: Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.

5,673 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations