scispace - formally typeset
Search or ask a question
Author

M. A. Ghatei

Bio: M. A. Ghatei is an academic researcher from Imperial College London. The author has contributed to research in topics: Enteroglucagon & Calcitonin gene-related peptide. The author has an hindex of 90, co-authored 410 publications receiving 36233 citations. Previous affiliations of M. A. Ghatei include Bristol Royal Infirmary & Hammersmith Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Ghrelin is the first circulating hormone demonstrated to stimulate food intake in man and is a potentially important new regulator of the complex systems controlling food intake and body weight.
Abstract: Ghrelin is a recently identified endogenous ligand for the growth hormone secretagogue receptor. It is synthesized predominantly in the stomach and found in the circulation of healthy humans. Ghrelin has been shown to promote increased food intake, weight gain and adiposity in rodents. The effect of ghrelin on appetite and food intake in man has not been determined. We investigated the effects of intravenous ghrelin (5.0 pmol/kg/min) or saline infusion on appetite and food intake in a randomised double-blind cross-over study in nine healthy volunteers. There was a clear-cut increase in energy consumed by every individual from a free-choice buffet (mean increase 28 ± 3.9%, p<0.001) during ghrelin compared with saline infusion. Visual analogue scores for appetite were greater during ghrelin compared to saline infusion. Ghrelin had no effect on gastric emptying as assessed by the paracetamol absorption test. Ghrelin is the first circulating hormone demonstrated to stimulate food intake in man. Endogenous ghr...

2,476 citations

Journal ArticleDOI
TL;DR: The observation of greatly increased postprandial plasma GLP-1 7-36 levels in patients with postgastrectomy dumping syndrome suggests that it may mediate the hyperinsulinaemia and reactive hypoglycaemia of this disorder.

1,897 citations

Journal ArticleDOI
04 Jan 1996-Nature
TL;DR: It is reported here that intracerebroventricular (ICV) GLP-1 powerfully inhibits feeding in fasted rats, and this findings suggest that central GLp-1 is a new physiological mediator of satiety.
Abstract: THE sequence of glucagon-like peptide-1 (7–36) amide (GLP-1) is completely conserved in all mammalian species studied, implying that it plays a critical physiological role1. We have shown that GLP-1 and its specific receptors are present in the hypo-thalamus2,3. No physiological role for central GLP-1 has been established. We report here that intracerebroventricular (ICV) GLP-1 powerfully inhibits feeding in fasted rats. ICV injection of the specific GLP-1-receptor antagonist, exendin (9-39)4, blocked the inhibitory effect of GLP-1 on food intake. Exendin (9-39) alone had no influence on fast-induced feeding but more than doubled food intake in satiated rats, and augmented the feeding response to the appetite stimulant, neuropeptide Y. Induction of c-fos is a marker of neuronal activation5. Following ICV GLP-1 injection, c-fos appeared exclusively in the paraventricular nucleus of the hypothalamus and central nucleus of the amygdala, and this was inhibited by prior administration of exendin (9-39). Both of these regions of the brain are of primary importance in the regulation of feeding6. These findings suggest that central GLP-1 is a new physiological mediator of satiety.

1,892 citations

Journal ArticleDOI
TL;DR: It is found that both intracerebroventricular and intraperitoneal administration of ghrelin in freely feeding rats stimulated food intake and plasma growth hormone (GH) concentration increased following both i.c.v. and i.p. administration.
Abstract: Ghrelin, a novel 28 amino acid peptide found in hypothalamus and stomach, was recently identified as the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). We have now found that both intracerebroventricular (ICV) and intraperitoneal (i.p.) administration of ghrelin in freely feeding rats stimulated food intake. The onset of increased feeding was rapid and after ICV administration was sustained for 24 hours. Following ICV administration of 3nmol ghrelin, the duration and magnitude of the feeding stimulation was similar to that following 5nmol neuropeptide Y (NPY). Plasma growth hormone (GH) concentration increased following both ICV and i.p. administration of ghrelin. Release of adrenocorticotrophic hormone (ACTH) was stimulated and thyroid stimulating hormone (TSH) inhibited following ICV administration of ghrelin. These data suggest a possible role for the newly identified endogenous hypothalamic peptide, ghrelin, in stimulation of feeding and growth hormone secretion.

1,588 citations

Journal ArticleDOI
TL;DR: The selective distribution of CGRP throughout sensory, motor, and autonomic areas of the spinal cord suggests many putative roles for this novel peptide.
Abstract: Calcitonin gene-related peptide (CGRP) immunoreactivity was found throughout the entire spinal cord of man, marmoset, horse, pig, cat, guinea pig, mouse, rat, and frog. CGRP-immunoreactive fibers were most concentrated in the dorsal horn. In the ventral horn of some species large immunoreactive cells, tentatively characterized as motoneurons, were present. Pretreatment of rats with colchicine enhanced staining of these large cells but did not reveal CGRP-immunoreactive cell bodies in the dorsal horn. In the dorsal root ganglia, CGRP immunoreactivity was observed in most of the small and some of the intermediate sized cells. Substance P immunoreactivity, where present, was co-localized with CGRP to a proportion of the small cells. In the cat the ratio of substance P-immunoreactive to CGRP-immunoreactive ganglion cells was 1:2.7 (p less than 0.001). The concentration of CGRP-immunoreactive material in tissue extracts was determined by radioimmunoassay. In the dorsal horn of the rat spinal cord the levels of peptide were found to range from 225.7 +/- 30.0 pmol/gm of wet weight in the cervical region to 340.6 +/- 74.6 pmol/gm in the sacral spinal cord. In the rat ventral spinal cord, levels of 15.7 +/- 2.7 to 35.1 +/- 10.6 pmol/gm were found. The concentration in dorsal root ganglia of the lumbar region was 225.4 +/- 46.9 pmol/gm. Gel permeation chromatography of this extractable CGRP-like immunoreactivity revealed three distinct immunoreactive peaks, one eluting at the position of synthetic CGRP and the others, of smaller size, eluting later. In cats and rats, rhizotomy induced a marked loss of CGRP-immunoreactive fibers from the dorsal horn of the spinal cord. In the cat, unilateral lumbosacral dorsal rhizotomy resulted in a significant (p less than 0.05) reduction of extractable CGRP from the ipsilateral lumbar dorsal horn (5.6 +/- 1.2 pmol/gm of wet weight) compared to the contralateral side (105.0 +/- 36.0 pmol/gm of wet weight). We conclude that the major origin of CGRP in the dorsal spinal cord is extrinsic, from afferent fibers which are probably derived from cells in the dorsal root ganglia. The selective distribution of CGRP throughout sensory, motor, and autonomic areas of the spinal cord suggests many putative roles for this novel peptide.

1,006 citations


Cited by
More filters
Journal ArticleDOI
06 Apr 2000-Nature
TL;DR: A model is described that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.
Abstract: New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time. The profound obesity that results in rodents (and in the rare human case as well) from mutation of key signalling molecules involved in this regulatory system highlights its importance to human health. Although each new signalling pathway discovered in the hypothalamus is a potential target for drug development in the treatment of obesity, the growing number of such signalling molecules indicates that food intake is controlled by a highly complex process. To better understand how energy homeostasis can be achieved, we describe a model that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.

6,178 citations

Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
20 Feb 1998-Cell
TL;DR: Two novel neuropeptides are identified, both derived from the same precursor by proteolytic processing, that bind and activate two closely related (previously) orphan G protein-coupled receptors in the hypothalamus of rats.

5,162 citations

Journal ArticleDOI
01 Jan 2003-Diabetes
TL;DR: Since the major defect leading to a decrease in β-cell mass in type 2 diabetes is increased apoptosis, while new islet formation andβ-cell replication are normal, therapeutic approaches designed to arrest apoptosis could be a significant new development in the management of type 2 Diabetes.
Abstract: Type 2 diabetes is characterized by impaired insulin secretion. Some but not all studies suggest that a decrease in beta-cell mass contributes to this. We examined pancreatic tissue from 124 autopsies: 91 obese cases (BMI >27 kg/m(2); 41 with type 2 diabetes, 15 with impaired fasting glucose [IFG], and 35 nondiabetic subjects) and 33 lean cases (BMI <25 kg/m(2); 16 type 2 diabetic and 17 nondiabetic subjects). We measured relative beta-cell volume, frequency of beta-cell apoptosis and replication, and new islet formation from exocrine ducts (neogenesis). Relative beta-cell volume was increased in obese versus lean nondiabetic cases (P = 0.05) through the mechanism of increased neogenesis (P < 0.05). Obese humans with IFG and type 2 diabetes had a 40% (P < 0.05) and 63% (P < 0.01) deficit and lean cases of type 2 diabetes had a 41% deficit (P < 0.05) in relative beta-cell volume compared with nondiabetic obese and lean cases, respectively. The frequency of beta-cell replication was very low in all cases and no different among groups. Neogenesis, while increased with obesity, was comparable in obese type 2 diabetic, IFG, or nondiabetic subjects and in lean type 2 diabetic or nondiabetic subjects. However, the frequency of beta-cell apoptosis was increased 10-fold in lean and 3-fold in obese cases of type 2 diabetes compared with their respective nondiabetic control group (P < 0.05). We conclude that beta-cell mass is decreased in type 2 diabetes and that the mechanism underlying this is increased beta-cell apoptosis. Since the major defect leading to a decrease in beta-cell mass in type 2 diabetes is increased apoptosis, while new islet formation and beta-cell replication are normal, therapeutic approaches designed to arrest apoptosis could be a significant new development in the management of type 2 diabetes, because this approach might actually reverse the disease to a degree rather than just palliate glycemia.

3,710 citations

Journal ArticleDOI
TL;DR: A hypothalamus-specific mRNA is described that encodes preprohypocretin, the putative precursor of a pair of peptides that share substantial amino acid identities with the gut hormone secretin, suggesting that the hypocretins function within the CNS as neurotransmitters.
Abstract: We describe a hypothalamus-specific mRNA that encodes preprohypocretin, the putative precursor of a pair of peptides that share substantial amino acid identities with the gut hormone secretin. The hypocretin (Hcrt) protein products are restricted to neuronal cell bodies of the dorsal and lateral hypothalamic areas. The fibers of these neurons are widespread throughout the posterior hypothalamus and project to multiple targets in other areas, including brainstem and thalamus. Hcrt immunoreactivity is associated with large granular vesicles at synapses. One of the Hcrt peptides was excitatory when applied to cultured, synaptically coupled hypothalamic neurons, but not hippocampal neurons. These observations suggest that the hypocretins function within the CNS as neurotransmitters.

3,558 citations