scispace - formally typeset
Search or ask a question
Author

M. A. Hussain

Bio: M. A. Hussain is an academic researcher. The author has contributed to research in topics: Sesamum. The author has an hindex of 1, co-authored 1 publications receiving 50 citations.
Topics: Sesamum

Papers
More filters
Journal ArticleDOI
TL;DR: Protein content, amino acid and oil composition of two cultivars of Sesamum indicum L. were studied in this paper, and the cultivars (dark and white) showed ash content in the range of 6.54-7.71%.
Abstract: Protein content, amino acid and oil composition of two cultivars of Sesamum indicum L. were studied. The cultivars (dark and white) showed ash content in the range of 6.54–7.71%, nitrogen 3.70–4.03...

53 citations


Cited by
More filters
Book
18 Oct 2002
TL;DR: In this article, Gunstone et al. present a survey of the production and trade of vegetable oils and their application in the food industry, including the extraction of olive oil from olives.
Abstract: Preface to the First Edition. Preface to the Second Edition. Contributors. List of Abbreviations. 1 Production and Trade of Vegetable Oils ( Frank D. Gunstone ). 1.1 Extraction, refining and processing. 1.2 Vegetable oils: Production, consumption and trade. 1.3 Some topical issues. 2 Palm Oil ( Siew Wai Lin ). 2.1 Introduction. 2.2 Composition and properties of palm oil and fractions. 2.3 Physical characteristics of palm oil products. 2.4 Minor components of palm oil products. 2.5 Food applications of palm oil products. 2.5.1 Cooking/frying oil. 2.6 Nutritional aspects of palm oil. 2.7 Sustainable palm oil. 2.8 Conclusions. 3 Soybean Oil ( Tong Wang ). 3.1 Introduction. 3.2 Composition of soybean and soybean oil. 3.3 Recovery and refining of soybean oil. 3.4 Oil composition modification by processing and biotechnology. 3.5 Physical properties of soybean oil. 3.6 Oxidation evaluation of soybean oil. 3.7 Nutritional properties of soybean oil. 3.8 Food uses of soybean oil. 4 Canola/Rapeseed Oil ( Roman Przybylski ). 4.1 Introduction. 4.2 Composition. 4.3 Physical and chemical properties. 4.4 Major food uses. 4.5 Conclusion and outlook. 5 Sunflower Oil ( Maria A. Grompone ). 5.1 Introduction. 5.2 Sunflower oil from different types of seed. 5.3 Physical and chemical properties. 5.4 Melting properties and thermal behaviour. 5.5 Extraction and processing of sunflower oil. 5.6 Modified properties of sunflower oil. 5.7 Oxidative stability of commercial sunflower oils. 5.8 Food uses of different sunflower oil types. 5.9 Frying use of commercial sunflower oil types. 6 The Lauric (Coconut and Palm Kernel) Oils ( Ibrahim Nuzul Amri ). 6.1 Introduction. 6.2 Coconut oil. 6.3 Palm kernel oil. 6.4 Processing. 6.5 Food uses. 6.6 Health aspects. 7 Cottonseed Oil ( Michael K. Dowd ). 7.1 Introduction. 7.2 History. 7.3 Seed composition. 7.4 Oil composition. 7.5 Chemical and physical properties of cottonseed oil. 7.6 Processing. 7.7 Cottonseed oil uses. 7.8 Co-product uses. 8 Groundnut (Peanut) Oil ( Lisa L. Dean, Jack P. Davis, and Timothy H. Sanders ). 8.1 Peanut production, history, and oil extraction. 8.2 Oil uses. 8.3 Composition of groundnut oil. 8.4 Chemical and physical characteristics of groundnut oil. 8.5 Health issues. 9 Olive Oil ( Dimitrios Boskou ). 9.1 Introduction. 9.2 Extraction of olive oil from olives. 9.3 Olive oil composition. 9.4 Effect of processing olives on the composition of virgin olive oils. 9.5 Refining and modification. 9.6 Hardening and interesterification. 9.7 Quality, genuineness and regulations. 9.8 Consumption and culinary applications. 10 Corn Oil ( Robert A. Moreau ). 10.1 Composition of corn oil. 10.2 Properties of corn oil. 10.3 Major food uses of corn oil. 10.4 Conclusions. 11 Minor and Speciality Oils ( S. Prakash Kochhar ). 11.1 Introduction. 11.2 Sesame seed oil. 11.3 Rice bran oil. 11.4 Flaxseed (linseed and linola) oil. 11.5 Safflower oil. 11.6 Argan kernel oil. 11.7 Avocado oil. 11.8 Camelina seed oil. 11.9 Grape seed oil. 11.10 Pumpkin seed oil. 11.11 Sea buckthorn oil. 11.12 Cocoa butter and CBE. 11.13 Oils containing a-linolenic acid (GLA) and stearidonic acid (SDA). 11.14 Tree nut oils. Useful Websites. Index.

617 citations

Journal ArticleDOI
TL;DR: The role of stearic acid on physic-chemical properties of oleogel was investigated and it was indicated that heterogeneous nucleation was coupled with the one-dimensional growth of gelator fibers as the key phenomenon in the formation of Oleogels.

109 citations

Journal ArticleDOI
TL;DR: The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotopes of the bulk oil.
Abstract: The authenticity of vegetable oils consumed in Slovenia and Croatia was investigated by carbon isotope analysis of the individual fatty acids by the use of gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS), and through carbon isotope analysis of the bulk oil. The fatty acids from samples of olive, pumpkin, sunflower, maize, rape, soybean, and sesame oils were separated by alkaline hydrolysis and derivatized to methyl esters for chemical characterization by capillary gas chromatography/mass spectrometry (GC/MS) prior to isotopic analysis. Enrichment in heavy carbon isotope ((13)C) of the bulk oil and of the individual fatty acids are related to (1) a thermally induced degradation during processing (deodorization, steam washing, or bleaching), (2) hydrolytic rancidity (lipolysis) and oxidative rancidity of the vegetable oils during storage, and (3) the potential blend with refined oil or other vegetable oils. The impurity or admixture of different oils may be assessed from the delta(13)C(16:0) vs. delta(13)C(18:1) covariations. The fatty acid compositions of Slovenian and Croatian olive oils are compared with those from the most important Mediterranean producer countries (Spain, Italy, Greece, and France).

97 citations

01 Jan 2008
TL;DR: In this article, the physical characteristics and c hemical composition of 10 sesame seed c ultivars, 3015, Kenana1, local white, mixed and aswad (Sudanese genotypes) and zirra2, Zirra7, Zira9, hurria11 and huria49 (USA g enotypes) were studied.
Abstract: 3 Abstract: The physical characteristics and c hemical composition of 10 sesame seed c ultivars, 3015, Kenana1, local white, mixed and aswad (Sudanese genotypes) and zirra2, zirra7, zirra9, hurria11 and huria49 (USA g enotypes) were studied. The oil characteristics of the sesame cultivars were also i nvestigated. Differences (P < 0.05) were observed for t housand seed weight with vari ability in s eed size and color. Significant differences (P < 0.05) were noticed for moisture, oil, ash, crude fiber and carbohydrates. Similarity in specific rotation, refractive index and specific gravity between local and introduced cultivars was found. Significant differences (P < 0.05) in pH and viscosity were observed. Differences (P < 0.05) were observed for iodine value, saponification value, peroxide value and fatty acid composition was also noticed. This latter was essentially dominated by oleic and linoleic acids, with some similarity in their contents between mixed (local) and huria11 (introduced) cultivars.

90 citations

Journal ArticleDOI
TL;DR: A germplasm collection of 33 entries comprising 22 sesame cultivars, 4 landraces of S. mulayanum and 7 other accessions of 4 wild species were analyzed and a few accessions having high linoleic acid which can be used for developing cultivars with desirable fatty acid compositions were identified.
Abstract: A germplasm collection of 33 entries comprising 22 sesame (Sesamum indicum L.) cultivars, 4 landraces of S. mulayanum and 7 other accessions of 4 wild species were analyzed for the fatty acid compositions of their seed oil. The entries varied widely in their fatty acid compositions. The percentage content of oleic, linoleic, palmitic and erucic acids ranged between 36.7–52.4, 30.4–51.6, 9.1–14.8 and 0.0–8.0, respectively. Linolenic and arachidonic acids were the minor constituents but varied widely in wild species. Oleic and linoleic were the major fatty acids with mean values of 45.9 and 40.5%, respectively and the mean of their combined values was 86.4%. The polyunsaturated fatty acid (PUFA) compositions ranged from 30.9 to 52.5% showing high variation in PUFA in the germplasm. Linoleic acid content was very high in one landrace (47.8) and one accession each of three wild species, S. mulayanum (49.3), S. malabaricum (48.2) and S. radiatum (51.6%). Use of fatty acid ratios to estimate the efficiency of biosynthetic pathways resulted in high oleic and low linoleic desaturation ratios and consequently high linoleic and very low linolenic acid contents in seed oil. The results of this study provided useful background information on the germplasm and also identified a few accessions having high linoleic acid which can be used for developing cultivars with desirable fatty acid compositions.

83 citations