scispace - formally typeset
Search or ask a question
Author

M. A. Karim

Bio: M. A. Karim is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: MOSFET & Relay. The author has an hindex of 10, co-authored 25 publications receiving 382 citations. Previous affiliations of M. A. Karim include East West University & Bangladesh University of Engineering and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The BSIM6 model has been extensively validated with industry data from 40-nm technology node and shows excellent source-drain symmetry during both dc and small signal analysis, thus giving excellent results during analog and RF circuit simulations.
Abstract: BSIM6 is the latest industry-standard bulk MOSFET model from the BSIM group developed specially for accurate analog and RF circuit designs. The popular real-device effects have been brought from BSIM4. The model shows excellent source-drain symmetry during both dc and small signal analysis, thus giving excellent results during analog and RF circuit simulations, e.g., harmonic balance simulation. The model is fully scalable with geometry, biases, and temperature. The model has a physical charge-based capacitance model including polydepletion and quantum-mechanical effect thereby giving accurate results in small signal and transient simulations. The BSIM6 model has been extensively validated with industry data from 40-nm technology node.

102 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an accurate and computationally efficient model for circuit simulation of ultrathin-body silicon-on-insulator MOSFETs with strong back-gate control.
Abstract: In this paper, we present an accurate and computationally efficient model for circuit simulation of ultrathin-body silicon-on-insulator MOSFETs with strong back-gate control. This work advances previous works in terms of numerical accuracy, computational efficiency, and behavior of the higher order derivatives of the drain current. We propose a consistent analytical solution for the calculation of front- and back-gate surface potentials and inversion charge. The accuracy of our surface potential calculation is on the order of nanovolts. The drain current model includes velocity saturation, channel-length modulation, mobility degradation, quantum confinement effect, drain-induced barrier lowering, and self-heating effect. The model has correct behavior for derivatives of the drain current and shows an excellent agreement with experimental data for long- and short-channel devices with 8-nm-thin silicon body and 10-nm-thin BOX.

90 citations

Journal ArticleDOI
TL;DR: The electrical and optical properties of printed TCOs are characterized as a function of ink formulation and printed film thickness, and the influence of moderate bending stress on ATO films is investigated, showing the potential for this work to scale to roll-to-roll (R2R) systems.
Abstract: Gravure printing is an attractive technique for patterning high-resolution features ( 1 m/s), but its electronic applications have largely been limited to depositing nanoparticle inks and polymer solutions on plastic. Here, we extend the scope of gravure to a new class of materials and on to new substrates by developing viscous sol–gel precursors for printing fine lines and films of leading transparent conducting oxides (TCOs) on flexible glass. We explore two strategies for controlling sol–gel rheology: tuning the precursor concentration and tuning the content of viscous stabilizing agents. The sol–gel chemistries studied yield printable inks with viscosities of 20–160 cP. The morphology of printed lines of antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO) is studied as a function of ink formulation for lines as narrow as 35 μm, showing that concentrated inks form thicker lines with smoother edge morphologies. The electrical and optical properties of printed TCOs are ...

42 citations

Journal ArticleDOI
TL;DR: In this article, a thermal network extraction methodology to characterize self-heating effect using two-port RF measurements is presented, and the technique of determining isothermal condition using only the selfheating (thermal) dominated range of the spectrum.
Abstract: In this letter, we present a thermal network extraction methodology to characterize self-heating effect using two-port RF measurements. We show the technique of determining isothermal condition using only the self-heating (thermal) dominated range of the spectrum. We use a self-consistent self-heating extraction scheme using both the real and imaginary parts of drain port admittance parameters. Appropriate thermal network is investigated, and a large amount of temperature rise due to self-heating is confirmed for short channel silicon-on-insulator MOSFETs with ultrathin body and buried oxide.

42 citations

Journal ArticleDOI
TL;DR: The first demonstration of inkjet-printed 4-terminal microelectromechanical (MEM) relays and inverters with hyper-abrupt switching that exhibit excellent electrical and mechanical characteristics are reported.
Abstract: We report the first demonstration of inkjet-printed 4-terminal microelectromechanical (MEM) relays and inverters with hyper-abrupt switching that exhibit excellent electrical and mechanical characteristics. This first implementation of a printed 4-terminal device is critically important, since it allows for the realization of full complementary logic functions. The floated fourth terminal (body electrode), which allows the gate switching voltage to be adjusted, is bonded to movable channel beams via a printed epoxy layer in a planar structure, which can move downward together via the electrostatic force between the gate electrodes and body such that the channel can also actuate downward and touch the drain electrode. Because the body, channel, and drain electrodes are completely electrically separated, no detectable leakage or electrical interference between the electrodes is observed. The printed MEM relay exhibited an on-state resistance of only 3.48 Ω, immeasurable off-state leakage, subthreshold swing <1 mV/dec, and a stable operation over 10(4) cycles with a switching delay of 47 μs, and the relay inverter exhibits abrupt transitions between on/off states. The operation of the printed 4-terminal MEM relay was also verified against the results of a 3-dimensional (3D) finite element simulation.

27 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review underlines not only the strategies developed to suppress the coffee-ring effect but also sheds light on approaches to arrive at novel processes and materials.

376 citations

Journal ArticleDOI
TL;DR: In this article, a review of printable inks based on conductive nanomaterials is presented, which summarizes basic principles and recent development of common printing technologies, formulations of printed inks, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods.
Abstract: DOI: 10.1002/admt.201800546 manufacturing processes and relatively high production cost.[12,13] PE has been explored for the manufacturing of flexible and stretchable electronic devices by printing functional inks containing soluble or dispersed materials,[14–16] which has enabled a wide variety of applications, such as transparent conductive films (TCFs), flexible energy harvesting and storage, thin film transistors (TFTs), electroluminescent devices, and wearable sensors.[17–24] The global PE market should reach $26.6 billion by 2022 from $14.0 billion in 2017 at a compound annual growth rate of 13.6%.[25] PE devices are manufactured by a variety of printing technologies. Typical printing technologies can be divided into two broad categories: noncontact patterning (or nozzle-based patterning) and contact-based patterning. The noncontact techniques include inkjet printing, electrohydrodynamic (EHD) printing, aerosol jet printing, and slot die coating, while screen printing, gravure printing, and flexographic printing are examples of the contact techniques. Each of these techniques has its own advantages and disadvantages, but they all rely on the principle of transferring inks to a substrate. Understanding the characteristics and recent advances of each printing technique is important to further the progress in PE. Moreover, to promote the lab-scale printing technologies to large-scale production process, roll-toroll (R2R) printing, which is one of the manufacturing methods to obtain large-area films with low cost and excellent durability, has drawn much attention from both industry and the research community. Nearly all of devices based on PE require conductive structures, interconnects, and contacts; therefore, highly conductive patterns, usually with high transparency and/or high resolution, fabricated by means of printing conductive materials are one of the most critical components in PE devices. Various printable conductive nanomaterials, such as metal nanomaterials (e.g., metal nanoparticles and metal nanowires) and carbon nanomaterials (e.g., graphene and carbon nanotubes (CNTs)), have been explored and used as major materials for PE. Applying printing technology to deposition of the conductive nanomaterials requires formulation of suitable inks. After depositing inks on different substrates, post-printing treatment, Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large-scale, low-cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial-based printing technologies, formulation of printable inks, post-printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed.

310 citations

Journal ArticleDOI
TL;DR: Significant efforts to improve the electrical performance and device‐yield of printed TFTs to match those of counterparts fabricated using conventional deposition or photolithography methods are highlighted.
Abstract: Drop-on-demand inkjet printing is one of the most attractive techniques from a manufacturing perspective due to the possibility of fabrication from a digital layout at ambient conditions, thus leading to great opportunities for the realization of low-cost and flexible thin-film devices. Over the past decades, a variety of inkjet-printed applications including thin-film transistors (TFTs), radio-frequency identification devices, sensors, and displays have been explored. In particular, many research groups have made great efforts to realize high-performance TFTs, for application as potential driving components of ubiquitous wearable electronics. Although there are still challenges to enable the commercialization of printed TFTs beyond laboratory-scale applications, the field of printed TFTs still attracts significant attention, with remarkable developments in soluble materials and printing methodology. Here, recent progress in printing-based TFTs is presented from materials to applications. Significant efforts to improve the electrical performance and device-yield of printed TFTs to match those of counterparts fabricated using conventional deposition or photolithography methods are highlighted. Moreover, emerging low-dimension printable semiconductors, including carbon nanotubes and transition metal dichalcogenides as well as mature semiconductors, and new-concept printed switching devices, are also discussed.

174 citations

Journal ArticleDOI
TL;DR: A "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system.
Abstract: Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors Here, we report on a “drop-on-demand” inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum s

160 citations