scispace - formally typeset
Author

M.A. Veluswami

Bio: M.A. Veluswami is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topic(s): Orthotropic material & Boundary value problem. The author has an hindex of 7, co-authored 12 publication(s) receiving 131 citation(s).

Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, the first few mode shapes and the respective natural frequencies of a submerged cantilever plate are found by using a finite element procedure, eigenvalues being obtained by a simultaneous iteration technique.
Abstract: The added mass of the fluid surrounding it plats an important role in the dynamic behaviour of a submerged structure. The first few mode shapes and the respective natural frequencies of a submerged cantilever plate are found by using a finite element procedure, eigenvalues being obtained by a simultaneous iteration technique. The influence of the water depth below the plate and also of the water's lateral extent is considered, in order to test the convergency of the results. Results on the effects of the depth of immersion on the natural frequencies and mode shapes of the cantilever plate for different aspect ratios are presented.

31 citations

Journal ArticleDOI

[...]

15 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the effect of fiber orientation and boundary conditions on the vibration and damping behavior of thin orthotropic triangular plates was studied by using a three-noded triangular plate finite element.
Abstract: The effect of fibre orientation and boundary conditions on the vibration and damping behaviour of thin orthotropic triangular plates is studied by using a three-noded triangular plate finite element. Isosceles triangular plates having three different included angles are analyzed.

14 citations

Journal ArticleDOI

[...]

14 citations

Journal ArticleDOI

[...]

13 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, a detailed theoretical analysis of the frequency response of a cantilever beam that is immersed in a viscous fluid and excited by an arbitrary driving force is presented.
Abstract: The vibrational characteristics of a cantilever beam are well known to strongly depend on the fluid in which the beam is immersed. In this paper, we present a detailed theoretical analysis of the frequency response of a cantilever beam, that is immersed in a viscous fluid and excited by an arbitrary driving force. Due to its practical importance in application to the atomic force microscope (AFM), we consider in detail the special case of a cantilever beam that is excited by a thermal driving force. This will incorporate the presentation of explicit analytical formulae and numerical results, which will be of value to the users and designers of AFM cantilever beams.

1,291 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a family of silicon nitride cantilevers ranging in length from 23 to 203 μm were designed and tested, and the frequency spectrum of thermal motion in air and water was measured.
Abstract: We have designed and tested a family of silicon nitride cantilevers ranging in length from 23 to 203 μm. For each, we measured the frequency spectrum of thermal motion in air and water. Spring constants derived from thermal motion data agreed fairly well with the added mass method; these and the resonant frequencies showed the expected increase with decreasing cantilever length. The effective cantilever density (calculated from the resonant frequencies) was 5.0 g/cm3, substantially affected by the mass of the reflective gold coating. In water, resonant frequencies were 2 to 5 times lower and damping was 9 to 24 times higher than in air. Thermal motion at the resonant frequency, a measure of noise in tapping mode atomic force microscopy, decreased about two orders of magnitude from the longest to the shortest cantilever. The advantages of the high resonant frequency and low noise of a short (30 μm) cantilever were demonstrated in tapping mode imaging of a protein sample in buffer. Low‐noise images were tak...

496 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the frequency response of a cantilever beam, that is immersed in a viscous fluid and excited by an arbitrary driving force, has been investigated and a critical assessment of the well-known inviscid model is presented.
Abstract: Detailed measurements of the frequency responses of a series of rectangular atomic force microscope (AFM) cantilever beams, immersed in a range of fluids, have been performed to test the validity and accuracy of the recent theoretical model of Sader [J. Appl. Phys. 84, 64 (1998)]. This theoretical model gives the frequency response of a cantilever beam, that is immersed in a viscous fluid and excited by an arbitrary driving force. Very good agreement between experimental measurements and theoretical calculations is found for all fluids considered. Furthermore, a critical assessment of the well-known inviscid model is presented, which demonstrates that this model is not applicable to AFM cantilever beams in general.

319 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the in-vacuo dynamic properties of cantilever plates were investigated, such as natural frequencies and mode shapes, of the plates, partially in contact with a fluid.
Abstract: Dynamic characteristics, such as natural frequencies and mode shapes, of cantilever plates, partially in contact with a fluid, are investigated. In the analysis of the linear fluid–structure system, it is assumed that the fluid is ideal, and fluid forces are associated with inertial effects of the surrounding fluid. This implies that the fluid pressure on the wetted surface of the structure is in phase with the structural acceleration. Furthermore, the infinite frequency limit is assumed on the free surface. The in vacuo dynamic properties of the plates are obtained by use of a standard finite-element software. In the wet part of the analysis, it is assumed that the plate structure preserves its in vacuo mode shapes when in contact with the surrounding fluid and that each mode shape gives rise to a corresponding surface pressure distribution of the cantilever plate. The fluid–structure interaction effects are calculated in terms of the generalized added-mass values independent of frequency (i.e., infinite frequency generalized added-masses), by use of a boundary-integral equation method together with the method of images in order to impose the Φ = 0 boundary condition on the free surface. To assess the influence of the surrounding fluid on the dynamic characteristics, the wet natural frequencies and associated mode shapes were calculated, and they compared very well with the available experimental data and numerical predictions.

114 citations

Journal ArticleDOI

[...]

Moon K. Kwak1
TL;DR: In this paper, the authors used the Rayleigh-Ritz method combined with the Green function method to estimate the virtual mass effect on the natural frequencies and mode shapes of rectangular plates in the presence of water on one side of the plate.
Abstract: This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.

106 citations