scispace - formally typeset
Search or ask a question
Author

M. Albert Caquot

Bio: M. Albert Caquot is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 901 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used a Berkovich indenter to determine hardness and elastic modulus from indentation load-displacement data, and showed that the curve of the curve is not linear, even in the initial stages of the unloading process.
Abstract: The indentation load-displacement behavior of six materials tested with a Berkovich indenter has been carefully documented to establish an improved method for determining hardness and elastic modulus from indentation load-displacement data. The materials included fused silica, soda–lime glass, and single crystals of aluminum, tungsten, quartz, and sapphire. It is shown that the load–displacement curves during unloading in these materials are not linear, even in the initial stages, thereby suggesting that the flat punch approximation used so often in the analysis of unloading data is not entirely adequate. An analysis technique is presented that accounts for the curvature in the unloading data and provides a physically justifiable procedure for determining the depth which should be used in conjunction with the indenter shape function to establish the contact area at peak load. The hardnesses and elastic moduli of the six materials are computed using the analysis procedure and compared with values determined by independent means to assess the accuracy of the method. The results show that with good technique, moduli can be measured to within 5%.

22,557 citations

Journal ArticleDOI
TL;DR: In this article, a solution of the axisymmetric Boussinesq problem is derived from which are deduced simple formulae for the depth of penetration of the tip of a punch of arbitrary profile and for the total load which must be applied to the punch to achieve this penetration.

3,959 citations

Journal ArticleDOI
TL;DR: In this article, a unified treatment of thermoelasticity by application and further developments of the methods of irreversible thermodynamics is presented, along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement.
Abstract: A unified treatment is presented of thermoelasticity by application and further developments of the methods of irreversible thermodynamics. The concept of generalized free energy introduced in a previous publication plays the role of a ``thermoelastic potential'' and is used along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement. The general laws of thermoelasticity are formulated in a variational form along with a minimum entropy production principle. This leads to equations of the Lagrangian type, and the concept of thermal force is introduced by means of a virtual work definition. Heat conduction problems can then be formulated by the methods of matrix algebra and mechanics. This also leads to the very general property that the entropy density obeys a diffusion‐type law. General solutions of the equations of thermoelasticity are also given using the Papkovitch‐Boussinesq potentials. Examples are presented and it is shown how the generalized coordinate method may be used to calculate the thermoelastic internal damping of elastic bodies.

2,287 citations

Journal ArticleDOI
01 Apr 1992
TL;DR: In this article, the energy release rate G is computed by the J-integral and the equilibrium is given by G = w. To avoid self consistent numerical calculations based on a specific interaction model (Lennard-Jones potential for example) we have used a Dugdale model, which allows analytical solutions.
Abstract: In the Johnson-Kendall-Roberts (JKR) approximation, adhesion forces outside the area of contact are neglected and elastic stresses at the edge of the contact are infinite, as in linear elastic fracture mechanics. On the other hand, in the Derjaguin-Muller-Toporov (DMT) approximation, the adhesion forces are taken into account, but the profile is assumed to be Hertzian, as if adhesion forces Could not deform the surfaces. To avoid self consistent numerical calculations based on a specific interaction model (Lennard-Jones potential for example) we have used a Dugdale model, which allows analytical solutions. The adhesion forces are assumed to have a constant value σO, the theoretical stress, over a length d at the crack tip. This internal loading acting in the air gap (the external crack) leads to a stress intensity factor Km, which is cancelled with the stress intensity factor KI due to the external loading. This cancellation suppresses the stress singularities, ensures the continuity of stresses, and fixes the radius c and the crack opening displacement δt. The energy release rate G is computed by the J-integral and the equilibrium is given by G = w. The equilibrium curves a(P), a(δ), and P(σ), the adherence forces at fixed load or fixed grips, the profiles, and the stress distributions can therefore be drawn as a function of a single parameter λ. When λ increases from zero to infinity there is a continuous transition from the DMT approximation to the JKR approximation. Furthermore the value of G for the DMT approximation is derived. It is shown that it is not physically consistent to have tensile stresses in the area of contact and no adhesion forces outside or no tensile stresses in the area of contact and adhesion forces outside. In the JKR approximation the distribution of adhesion forces is reduced to a singular stress at r = a+. The total attraction force outside the contact being zero, the integral of stresses in the contact is equal to the applied load P and negative applied loads are supported by the elastic restoring forces. In the DMT approximation the adhesion stresses tend toward zero to have a continuity with the stress at r = a−, but their integral is finite and the total attraction force outside the contact is 2πwR. In the area of contact the distribution of stresses is Hertzian, and their integral is P + 27πwR. Negative applied loads are sustained by adhesion forces outside the contact.

1,808 citations

Journal ArticleDOI
TL;DR: In this article, the static deformation of an elastic half-space by surface pressure is reviewed and a brief mention is made of methods for solving the problem when the medium is plane-strategized, but the major emphasis is on the solution for spherical, radially stratified, gravitating earth models.
Abstract: The static deformation of an elastic half-space by surface pressure is reviewed. A brief mention is made of methods for solving the problem when the medium is plane stratified, but the major emphasis is on the solution for spherical, radially stratified, gravitating earth models. Love-number calculations are outlined, and from the Love numbers, Green's functions are formed for the surface mass-load boundary-value problem. Tables of mass-load Green's functions, computed for realistic earth models, are given, so that the displacements, tilts, accelerations, and strains at the earth's surface caused by any static load can be found by evaluating a convolution integral over the loaded region.

1,588 citations