scispace - formally typeset
Search or ask a question
Author

M. Berger

Bio: M. Berger is an academic researcher from European Space Research and Technology Centre. The author has contributed to research in topics: Radiometer & Land cover. The author has an hindex of 9, co-authored 13 publications receiving 1945 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The goal of this paper is to present the main aspects of the baseline mission and describe how soil moisture will be retrieved from SMOS data.
Abstract: Microwave radiometry at low frequencies (L-band: 1.4 GHz, 21 cm) is an established technique for estimating surface soil moisture and sea surface salinity with a suitable sensitivity. However, from space, large antennas (several meters) are required to achieve an adequate spatial resolution at L-band. So as to reduce the problem of putting into orbit a large filled antenna, the possibility of using antenna synthesis methods has been investigated. Such a system, relying on a deployable structure, has now proved to be feasible and has led to the Soil Moisture and Ocean Salinity (SMOS) mission, which is described. The main objective of the SMOS mission is to deliver key variables of the land surfaces (soil moisture fields), and of ocean surfaces (sea surface salinity fields). The SMOS mission is based on a dual polarized L-band radiometer using aperture synthesis (two-dimensional [2D] interferometer) so as to achieve a ground resolution of 50 km at the swath edges coupled with multiangular acquisitions. The radiometer will enable frequent and global coverage of the globe and deliver surface soil moisture fields over land and sea surface salinity over the oceans. The SMOS mission was proposed to the European Space Agency (ESA) in the framework of the Earth Explorer Opportunity Missions. It was selected for a tentative launch in 2005. The goal of this paper is to present the main aspects of the baseline mission and describe how soil moisture will be retrieved from SMOS data.

1,528 citations

Journal ArticleDOI
TL;DR: In this article, a review of surface soil moisture retrieval from microwave radiometric systems is presented, highlighting key issues that will have to be addressed in the near future to secure operational use of the proposed retrieval approaches.

285 citations

Journal ArticleDOI
TL;DR: This letter presents a synthetic L-band (1.4 GHz) multiangular brightness temperature dataset over land surfaces that was simulated at a half-degree resolution and at the global scale and constitutes a useful dataset for a first evaluation of the sensitivity of future satellite-based L- band radiometry data to soil moisture.
Abstract: This letter presents a synthetic L-band (1.4 GHz) multiangular brightness temperature dataset over land surfaces that was simulated at a half-degree resolution and at the global scale. The microwave emission of various land-covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) was computed using a simple model [L-band Microwave Emission of the Biosphere (L-MEB)] based on radiative transfer equations. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land-cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving the L-MEB model: soil temperature at the surface and at depth, surface soil moisture, proportion of frozen surface soil moisture, and snow cover characteristics. The obtained global maps constitute a useful dataset for a first evaluation of the sensitivity of future satellite-based L-band radiometry data to soil moisture.

118 citations

Proceedings ArticleDOI
23 Jul 2007
TL;DR: The Sentinel-2 system is developing, providing globally with systematic acquisition high resolution (10-20 m) optical observations with a high revisit tailored towards the needs of operational land services.
Abstract: In the frame of the Global Monitoring for Environment and Security programme (GMES) jointly implemented by ESA and EC, ESA is developing the Sentinel-2 system, providing globally with systematic acquisition high resolution (10-20 m) optical observations with a high revisit tailored towards the needs of operational land services. This system will ensure data continuity of SPOT and Landsat satellite series and further enhancement to account of future service evolution.

59 citations

Journal ArticleDOI
TL;DR: In this paper, the accuracy of the geophysical parameter retrieval depends on the knowledge of the angular dependence of the emissivity over a wide range of incidence and azimuth angles.
Abstract: [1] Soil moisture and ocean salinity at surface level can be measured by passive microwave remote sensing at L-band. To provide global coverage data of soil moisture and ocean salinity with three-day revisit time, the Earth Explorer Opportunity Mission SMOS (Soil Moisture and Ocean Salinity) was selected by ESA (European Space Agency) in May 1999. SMOS' single payload is a Y-shaped 2-D aperture synthesis interferometric radiometer called MIRAS (Microwave Imaging Radiometer by Aperture Synthesis). SMOS presents some particular imaging peculiarities: variation of incidence and azimuth angles, different radiometric sensitivity and accuracy at each direction (pixels), and geometric polarization mixing. Therefore, the accuracy of the geophysical parameter retrieval depends on the knowledge of the angular dependence of the emissivity over a wide range of incidence and azimuth angles. The accuracy of the sea surface salinity retrievals depends on our capability to correct the wind-induced variation of the brightness temperatures. To better understand wind effects, ESA sponsored the WInd and Salinity Experiment 2000 (WISE-2000) from November 15, 2000, to January 16, 2001, in the Casablanca oil rig, at 40 km off the coast of Tarragona (Spain). This paper is divided into two parts. First, it presents the derived sensitivities of the brightness temperatures at vertical and horizontal polarizations with wind speed, and compares to Hollinger's measurements and numerical simulations. Second, these results are applied to the SMOS sea surface salinity (SSS) retrieval problem for different tracks within the swath. It is shown that, except for low SSS and sea surface temperature (SST), the retrieved SSS has a RMS error of approximately 1 psu in one satellite pass.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations

Journal ArticleDOI
TL;DR: An overview of the GMES Sentinel-2 mission including a technical system concept overview, image quality, Level 1 data processing and operational applications is provided.

2,517 citations

Journal ArticleDOI
12 Apr 2010
TL;DR: The SMOS satellite was launched successfully on November 2, 2009, and will achieve an unprecedented maximum spatial resolution of 50 km at L-band over land (43 km on average over the field of view), providing multiangular dual polarized (or fully polarized) brightness temperatures over the globe.
Abstract: It is now well understood that data on soil moisture and sea surface salinity (SSS) are required to improve meteorological and climate predictions. These two quantities are not yet available globally or with adequate temporal or spatial sampling. It is recognized that a spaceborne L-band radiometer with a suitable antenna is the most promising way of fulfilling this gap. With these scientific objectives and technical solution at the heart of a proposed mission concept the European Space Agency (ESA) selected the Soil Moisture and Ocean Salinity (SMOS) mission as its second Earth Explorer Opportunity Mission. The development of the SMOS mission was led by ESA in collaboration with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Tecnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L-Band 2-D interferometric radiometer operating in the 1400-1427-MHz protected band . The instrument receives the radiation emitted from Earth's surface, which can then be related to the moisture content in the first few centimeters of soil over land, and to salinity in the surface waters of the oceans. SMOS will achieve an unprecedented maximum spatial resolution of 50 km at L-band over land (43 km on average over the field of view), providing multiangular dual polarized (or fully polarized) brightness temperatures over the globe. SMOS has a revisit time of less than 3 days so as to retrieve soil moisture and ocean salinity data, meeting the mission's science objectives. The caveat in relation to its sampling requirements is that SMOS will have a somewhat reduced sensitivity when compared to conventional radiometers. The SMOS satellite was launched successfully on November 2, 2009.

1,553 citations

Journal ArticleDOI
TL;DR: The Global Land Evaporation Amsterdam Model (GLEAM) as discussed by the authors is a set of algorithms dedicated to the estimation of terrestrial evaporation and root-zone soil moisture from satellite data.
Abstract: . The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms dedicated to the estimation of terrestrial evaporation and root-zone soil moisture from satellite data. Ever since its development in 2011, the model has been regularly revised, aiming at the optimal incorporation of new satellite-observed geophysical variables, and improving the representation of physical processes. In this study, the next version of this model (v3) is presented. Key changes relative to the previous version include (1) a revised formulation of the evaporative stress, (2) an optimized drainage algorithm, and (3) a new soil moisture data assimilation system. GLEAM v3 is used to produce three new data sets of terrestrial evaporation and root-zone soil moisture, including a 36-year data set spanning 1980–2015, referred to as v3a (based on satellite-observed soil moisture, vegetation optical depth and snow-water equivalent, reanalysis air temperature and radiation, and a multi-source precipitation product), and two satellite-based data sets. The latter share most of their forcing, except for the vegetation optical depth and soil moisture, which are based on observations from different passive and active C- and L-band microwave sensors (European Space Agency Climate Change Initiative, ESA CCI) for the v3b data set (spanning 2003–2015) and observations from the Soil Moisture and Ocean Salinity (SMOS) satellite in the v3c data set (spanning 2011–2015). Here, these three data sets are described in detail, compared against analogous data sets generated using the previous version of GLEAM (v2), and validated against measurements from 91 eddy-covariance towers and 2325 soil moisture sensors across a broad range of ecosystems. Results indicate that the quality of the v3 soil moisture is consistently better than the one from v2: average correlations against in situ surface soil moisture measurements increase from 0.61 to 0.64 in the case of the v3a data set and the representation of soil moisture in the second layer improves as well, with correlations increasing from 0.47 to 0.53. Similar improvements are observed for the v3b and c data sets. Despite regional differences, the quality of the evaporation fluxes remains overall similar to the one obtained using the previous version of GLEAM, with average correlations against eddy-covariance measurements ranging between 0.78 and 0.81 for the different data sets. These global data sets of terrestrial evaporation and root-zone soil moisture are now openly available at www.GLEAM.eu and may be used for large-scale hydrological applications, climate studies, or research on land–atmosphere feedbacks.

1,282 citations

Journal ArticleDOI
TL;DR: The new data policy is revolutionizing the use of Landsat data, spurring the creation of robust standard products and new science and applications approaches, and promoting increased international collaboration to meet the Earth observing needs of the 21st century.

976 citations