scispace - formally typeset
Search or ask a question
Author

M. Bohr

Bio: M. Bohr is an academic researcher from Intel. The author has contributed to research in topics: CMOS & PMOS logic. The author has an hindex of 21, co-authored 27 publications receiving 3347 citations.

Papers
More filters
Proceedings ArticleDOI
08 Dec 2003
TL;DR: In this article, the authors describe a novel strained transistor architecture which is incorporated into a 90nm logic technology on 300mm wafers, which features an epitaxially grown strained SiGe film embedded in the source drain regions.
Abstract: This paper describes the details of a novel strained transistor architecture which is incorporated into a 90nm logic technology on 300mm wafers The unique strained PMOS transistor structure features an epitaxially grown strained SiGe film embedded in the source drain regions Dramatic performance enhancement relative to unstrained devices are reported These transistors have gate length of 45nm and 50nm for NMOS and PMOS respectively, 12nm physical gate oxide and Ni salicide World record PMOS drive currents of 700/spl mu/A//spl mu/m (high V/sub T/) and 800/spl mu/A//spl mu/m (low V/sub T/) at 12V are demonstrated NMOS devices exercise a highly tensile silicon nitride capping layer to induce tensile strain in the NMOS channel region High NMOS drive currents of 126mA//spl mu/m (high VT) and 145mA//spl mu/m (low VT) at 12V are reported The technology is mature and is being ramped into high volume manufacturing to fabricate next generation Pentium/spl reg/ and Intel/spl reg/ Centrino/spl trade/ processor families

729 citations

Journal ArticleDOI
TL;DR: In this paper, a leading-edge 90-nm technology with 1.2-nm physical gate oxide, 45-nm gate length, strained silicon, NiSi, seven layers of Cu interconnects, and low/spl kappa/CDO for high-performance dense logic is presented.
Abstract: A leading-edge 90-nm technology with 1.2-nm physical gate oxide, 45-nm gate length, strained silicon, NiSi, seven layers of Cu interconnects, and low-/spl kappa/ CDO for high-performance dense logic is presented. Strained silicon is used to increase saturated n-type and p-type metal-oxide-semiconductor field-effect transistors (MOSFETs) drive currents by 10% and 25%, respectively. Using selective epitaxial Si/sub 1-x/Ge/sub x/ in the source and drain regions, longitudinal uniaxial compressive stress is introduced into the p-type MOSEFT to increase hole mobility by >50%. A tensile silicon nitride-capping layer is used to introduce tensile strain into the n-type MOSFET and enhance electron mobility by 20%. Unlike all past strained-Si work, the hole mobility enhancement in this paper is present at large vertical electric fields in nanoscale transistors making this strain technique useful for advanced logic technologies. Furthermore, using piezoresistance coefficients it is shown that significantly less strain (/spl sim/5 /spl times/) is needed for a given PMOS mobility enhancement when applied via longitudinal uniaxial compression versus in-plane biaxial tension using the conventional Si/sub 1-x/Ge/sub x/ substrate approach.

728 citations

Journal ArticleDOI
27 Dec 2005
TL;DR: In this article, a column-based dynamic power supply has been integrated into a high-frequency 70-Mb SRAM design that is fabricated on a high performance 65-nm CMOS technology.
Abstract: Column-based dynamic power supply has been integrated into a high-frequency 70-Mb SRAM design that is fabricated on a high-performance 65-nm CMOS technology. The fully synchronized design achieves a 3-GHz operating frequency at 1.1-V power supply. The power supply at SRAM cell array is dynamically switched between two different voltage levels during READ and WRITE operations. Silicon measurement has proven this method to be effective in achieving both good cell READ and WRITE margins, while lowering the overall SRAM leakage power consumption.

359 citations

Proceedings ArticleDOI
13 Dec 2004
TL;DR: A 65nm generation logic technology with 1.2nm physical gate oxide, 35nm gate length, enhanced channel strain, NiSi, 8 layers of Cu interconnect, and low-k ILD for dense high performance logic is presented in this article.
Abstract: A 65nm generation logic technology with 1.2nm physical gate oxide, 35nm gate length, enhanced channel strain, NiSi, 8 layers of Cu interconnect, and low-k ILD for dense high performance logic is presented. Transistor gate length is scaled down to 35nm while not scaling the gate oxide as a means to improve performance and reduce power. Increased NMOS and PMOS drive currents are achieved by enhanced channel strain and junction engineering. 193nm lithography along with APSM mask technology is used on critical layers to provide aggressive design rules and a 6-T SRAM cell size of 0.57/spl mu/m/sup 2/. Process yield, performance and reliability are demonstrated on a 70 Mbit SRAM test vehicle with >0.5 billion transistors.

264 citations

Proceedings ArticleDOI
13 Jun 2000
TL;DR: In this article, the authors investigate scaling challenges and outline device design requirements needed to support high performance low power planar CMOS transistor structures with physical gate lengths (L/sub GATE/) below 50 nm.
Abstract: Summary form only given. We investigate scaling challenges and outline device design requirements needed to support high performance-low power planar CMOS transistor structures with physical gate lengths (L/sub GATE/) below 50 nm. This work uses a combination of simulation results, experimental data and critical analysis of published data. A realistic assessment of gate oxide thickness scaling and maximum tolerable oxide leakage is provided. We conclude that the commonly accepted upper limit of 1 A/cm/sup 2/ for gate leakage is overly pessimistic and that leakage values of up to 100 A/cm/sup 2/ are deemed acceptable for future logic technology generations. Unique channel mobility and junction edge leakage degradation mechanisms, which become prominent at 50 nm L/sub GATE/ dimensions, are highlighted using quantitative analysis. Source-drain extension (SDE) profile design requirements to simultaneously minimize short channel effects (SCE) and achieve low parasitic resistance for sub-50 nm L/sub GATE/ transistors are described for the first time.

181 citations


Cited by
More filters
Book
Yuan Taur1, Tak H. Ning1
01 Jan 2016
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Abstract: Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally-renowned authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model, and SiGe-base bipolar devices.

2,680 citations

Journal ArticleDOI
29 Apr 2003
TL;DR: Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices and different circuit techniques to reduce the leakage power consumption are explored.
Abstract: High leakage current in deep-submicrometer regimes is becoming a significant contributor to power dissipation of CMOS circuits as threshold voltage, channel length, and gate oxide thickness are reduced. Consequently, the identification and modeling of different leakage components is very important for estimation and reduction of leakage power, especially for low-power applications. This paper reviews various transistor intrinsic leakage mechanisms, including weak inversion, drain-induced barrier lowering, gate-induced drain leakage, and gate oxide tunneling. Channel engineering techniques including retrograde well and halo doping are explained as means to manage short-channel effects for continuous scaling of CMOS devices. Finally, the paper explores different circuit techniques to reduce the leakage power consumption.

2,281 citations

Journal ArticleDOI
TL;DR: A new type of transistor in which there are no junctions and no doping concentration gradients is proposed and demonstrated, which has near-ideal subthreshold slope, extremely low leakage currents, and less degradation of mobility with gate voltage and temperature than classical transistors.
Abstract: All existing transistors are based on the use of semiconductor junctions formed by introducing dopant atoms into the semiconductor material. As the distance between junctions in modern devices drops below 10 nm, extraordinarily high doping concentration gradients become necessary. Because of the laws of diffusion and the statistical nature of the distribution of the doping atoms, such junctions represent an increasingly difficult challenge for the semiconductor industry. Here, we propose and demonstrate a new type of transistor in which there are no junctions and no doping concentration gradients. These devices have full CMOS functionality and are made using silicon nanowires. They have near-ideal subthreshold slope, extremely low leakage currents, and less degradation of mobility with gate voltage and temperature than classical transistors.

2,090 citations

Journal ArticleDOI
TL;DR: In this article, the latest advances in valley-tronics have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.
Abstract: Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control. The energy extrema of an electronic band are referred to as valleys. In 2D materials, two distinguishable valleys can be used to encode information and explore other valleytronic applications.

1,799 citations

Journal ArticleDOI
25 Apr 2008-Science
TL;DR: A simple approach to high-performance, stretchable, and foldable integrated circuits that integrate inorganic electronic materials, including aligned arrays of nanoribbons of single crystalline silicon, with ultrathin plastic and elastomeric substrates.
Abstract: We have developed a simple approach to high-performance, stretchable, and foldable integrated circuits. The systems integrate inorganic electronic materials, including aligned arrays of nanoribbons of single crystalline silicon, with ultrathin plastic and elastomeric substrates. The designs combine multilayer neutral mechanical plane layouts and "wavy" structural configurations in silicon complementary logic gates, ring oscillators, and differential amplifiers. We performed three-dimensional analytical and computational modeling of the mechanics and the electronic behaviors of these integrated circuits. Collectively, the results represent routes to devices, such as personal health monitors and other biomedical devices, that require extreme mechanical deformations during installation/use and electronic properties approaching those of conventional systems built on brittle semiconductor wafers.

1,588 citations