scispace - formally typeset
Search or ask a question
Author

M. Bruse

Bio: M. Bruse is an academic researcher from German Aerospace Center. The author has contributed to research in topics: Shear stress & Wind tunnel. The author has an hindex of 4, co-authored 4 publications receiving 757 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 3D-riblet surface with sharp-edged fin-shaped elements arranged in an interlocking array was investigated and the turbulent wall shear stress on this surface was measured using direct force balances.
Abstract: The skin of fast sharks exhibits a rather intriguing three-dimensional rib pattern. Therefore, the question arises whether or not such three-dimensional riblet surfaces may produce an equivalent or even higher drag reduction than straight two-dimensional riblets. Previously, the latter have been shown to reduce turbulent wall shear stress by up to 10%. Hence, the drag reduction by three-dimensional riblet surfaces is investigated experimentally. Our idealized 3D-surface consists of sharp-edged fin-shaped elements arranged in an interlocking array. The turbulent wall shear stress on this surface is measured using direct force balances. In a first attempt, wind tunnel experiments with about 365,000 tiny fin elements per test surface have been carried out. Due to the complexity of the surface manufacturing process, a comprehensive parametric study was not possible. These initial wind tunnel data, however, hinted at an appreciable drag reduction. Subsequently, in order to have a better judgement on the potential of these 3D-surfaces, oil channel experiments are carried out. In our new oil channel, the geometrical dimensions of the fins can be magnified 10 times in size as compared to the initial wind tunnel experiments, i.e., from typically 0.5 mm to 5 mm. For these latter oil channel experiments, novel test plates with variable fin configuration have been manufactured, with 1,920–4,000 fins. This enhanced variability permits measurements with a comparatively large parameter range. As a result of our measurements, it can be concluded, that 3D-riblet surfaces do indeed produce an appreciable drag reduction. We found as much as 7.3% decreased turbulent shear stress, as compared to a smooth reference plate. However, in direct comparison with 2D riblets, the performance of 3D-riblets is still inferior by about 1.7%. On the other hand, it appears conceivable, with a careful design of the fin shape (possibly supported by theory), that this inferiority in performance might be reduced. Nevertheless, at present, it seems to be rather unlikely, that 3D-riblets can significantly outperform 2D-riblets. Finally, one interesting finding remains to be mentioned: The optimum drag reduction for short 3D-riblets occurs at a lower rib height than for longer 3D-riblets or for infinitely long 2D-riblets. The same observation had been made previously on shark scales of different species with differing rib lengths, but no explanation could be given.

473 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the results of investigations aiming at technological applications can also provide insights into biophysical phenomena and techniques for reducing wall shear stresses and for controlling boundary-layer separation are described.
Abstract: A survey is given on fluid-dynamic effects caused by the structure and properties of biological surfaces. It is demonstrated that the results of investigations aiming at technological applications can also provide insights into biophysical phenomena. Techniques are described both for reducing wall shear stresses and for controlling boundary-layer separation. (a) Wall shear stress reduction was investigated experimentally for various riblet surfaces including a shark skin replica. The latter consists of 800 plastic model scales with compliant anchoring. Hairy surfaces are also considered, and surfaces in which the no-slip condition is modified. Self-cleaning surfaces such as that of lotus leaves represent an interesting option to avoid fluid-dynamic deterioration by the agglomeration of dirt. An example of technological implementation is discussed for riblets in long-range commercial aircraft. (b) Separation control is also an important issue in biology. After a few brief comments on vortex generators, the mechanism of separation control by bird feathers is described in detail. Self-activated movable flaps (= artificial bird feathers) represent a high-lift system enhancing the maximum lift of airfoils by about 20%. This is achieved without perceivable deleterious effects under cruise conditions. Finally, flight experiments on an aircraft with laminar wing and movable flaps are presented.

378 citations

Book ChapterDOI
01 Jan 1999
TL;DR: In this paper, the longitudinal ribs rectify the turbulent flow in mean flow direction by hampering the fluctuating cross-flow velocity component w.r.t. burst and sweep phenomena.
Abstract: The fact that riblets do reduce shear-stress has been established for more than ten years beyond any reasonable doubt. A plausible explanation is, that the longitudinal ribs rectify the turbulent flow in mean flow direction by hampering the fluctuating cross-flow velocity component w’. In a turbulent boundary layer the cross-flow w’ and the flow component normal to the wall v’ are connected through the burst and sweep phenomena. If the cross-flow fluctuation w’ close to the wall can be reduced, the turbulent momentum transfer close to the surface will be reduced as well and consequently, the shear stress \( - p \cdot (\overline {u'v'} ) \) will be decreased

5 citations

Book ChapterDOI
01 Jan 2000
TL;DR: In this paper, an overview of the riblet research with the main emphasis on the european research in this field, which was motivated by the observation of the structure of the scales of fast swimming sharks, was given.
Abstract: The present paper gives an overview of the riblet research with the main emphasis on the european research in this field, which was motivated by the observation of the structure of the scales of fast swimming sharks. The drag reducing effect of this structure, which consists of fine streamwise aligned ribs, was shown experimentally and theoretically. Furthermore, an explanation how riblets do reduce the turbulent skin friction is given. The results of a parameter optimization of the riblet geometry is shown. Several aspects of the riblet film application on an long range aircraft are considered. The main focus lays here on the effects of an angle of yaw on the riblet performance.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the theoretical mechanisms of the wetting of rough surfaces are presented followed by the characterization of natural leaf surfaces and a comprehensive review is presented on artificial super-hydrophobic surfaces fabricated using various fabrication techniques and the influence of micro-, nano-and hierarchical structures on superhydrophobicity, self-cleaning, low adhesion, and drag reduction.

1,610 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the experimental evidence on turbulent flows over rough walls and discuss some ideas on how rough walls can be modeled without the detailed computation of the flow around the roughness element.
Abstract: ▪ AbstractWe review the experimental evidence on turbulent flows over rough walls. Two parameters are important: the roughness Reynolds number ks+, which measures the effect of the roughness on the buffer layer, and the ratio of the boundary layer thickness to the roughness height, which determines whether a logarithmic layer survives. The behavior of transitionally rough surfaces with low ks+ depends a lot on their geometry. Riblets and other drag-reducing cases belong to this regime. In flows with δ/k ≲ 50, the effect of the roughness extends across the boundary layer, and is also variable. There is little left of the original wall-flow dynamics in these flows, which can perhaps be better described as flows over obstacles. We also review the evidence for the phenomenon of d-roughness. The theoretical arguments are sound, but the experimental evidence is inconclusive. Finally, we discuss some ideas on how rough walls can be modeled without the detailed computation of the flow around the roughness element...

1,389 citations

Journal ArticleDOI
TL;DR: This paper provides a broad overview of the various objects and processes of interest found in nature and applications under development or available in the marketplace.
Abstract: Nature has developed materials, objects and processes that function from the macroscale to the nanoscale. These have gone through evolution over 3.8Gyr. The emerging field of biomimetics allows one...

1,087 citations

Journal ArticleDOI
TL;DR: A review of experimental studies regarding the phenomenon of slip of Newtonian liquids at solid interfaces is provided in this article, with particular attention to the effects that factors such as surface roughness, wettability and the presence of gaseous layers might have on the measured interfacial slip.
Abstract: For several centuries fluid dynamics studies have relied upon the assumption that when a liquid flows over a solid surface, the liquid molecules adjacent to the solid are stationary relative to the solid. This no-slip boundary condition (BC) has been applied successfully to model many macroscopic experiments, but has no microscopic justification. In recent years there has been an increased interest in determining the appropriate BCs for the flow of Newtonian liquids in confined geometries, partly due to exciting developments in the fields of microfluidic and microelectromechanical devices and partly because new and more sophisticated measurement techniques are now available. An increasing number of research groups now dedicate great attention to the study of the flow of liquids at solid interfaces, and as a result a large number of experimental, computational and theoretical studies have appeared in the literature. We provide here a review of experimental studies regarding the phenomenon of slip of Newtonian liquids at solid interfaces. We dedicate particular attention to the effects that factors such as surface roughness, wettability and the presence of gaseous layers might have on the measured interfacial slip. We also discuss how future studies might improve our understanding of hydrodynamic BCs and enable us to actively control liquid slip.

985 citations

Journal ArticleDOI
TL;DR: It is shown that TRIZ, the Russian system of problem solving, can be adapted to illuminate and manipulate this process of transfer of ideas and analogues from biology to technology.
Abstract: Biomimetics, a name coined by Otto Schmitt in the 1950s for the transfer of ideas and analogues from biology to technology, has produced some significant and successful devices and concepts in the past 50 years, but is still empirical. We show that TRIZ, the Russian system of problem solving, can be adapted to illuminate and manipulate this process of transfer. Analysis using TRIZ shows that there is only 12% similarity between biology and technology in the principles which solutions to problems illustrate, and while technology solves problems largely by manipulating usage of energy, biology uses information and structure, two factors largely ignored by technology.

866 citations