scispace - formally typeset
Search or ask a question
Author

M.C. Alonso-García

Bio: M.C. Alonso-García is an academic researcher from Complutense University of Madrid. The author has contributed to research in topics: Shading & Photovoltaic system. The author has an hindex of 2, co-authored 2 publications receiving 446 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a conventional photovoltaic module has been prepared with the purpose of accessing its cells either individually or associated, and measurements of every cell and of the whole module have been performed in direct and reverse bias, with the objective of documenting the scattering in cell parameters, working point of the cells and shading effects.

354 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new model to represent the behavior of photovoltaic (PV) solar cells in reverse bias, which can be adapted to PV cells in which reverse characteristic is dominated by avalanche mechanisms.

129 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a MATLAB-based modeling and simulation scheme is presented for studying the I-V and P-V characteristics of a PV array under a nonuniform insolation due to partial shading.
Abstract: The performance of a photovoltaic (PV) array is affected by temperature, solar insolation, shading, and array configuration. Often, the PV arrays get shadowed, completely or partially, by the passing clouds, neighboring buildings and towers, trees, and utility and telephone poles. The situation is of particular interest in case of large PV installations such as those used in distributed power generation schemes. Under partially shaded conditions, the PV characteristics get more complex with multiple peaks. Yet, it is very important to understand and predict them in order to extract the maximum possible power. This paper presents a MATLAB-based modeling and simulation scheme suitable for studying the I-V and P-V characteristics of a PV array under a nonuniform insolation due to partial shading. It can also be used for developing and evaluating new maximum power point tracking techniques, especially for partially shaded conditions. The proposed models conveniently interface with the models of power electronic converters, which is a very useful feature. It can also be used as a tool to study the effects of shading patterns on PV panels having different configurations. It is observed that, for a given number of PV modules, the array configuration (how many modules in series and how many in parallel) significantly affects the maximum available power under partially shaded conditions. This is another aspect to which the developed tool can be applied. The model has been experimentally validated and the usefulness of this research is highlighted with the help of several illustrations. The MATLAB code of the developed model is freely available for download.

1,139 citations

Journal ArticleDOI
TL;DR: The luminescent solar concentrator (LSC) is a simple device at its heart, employing a polymeric or glass waveguide and luminecent molecules to generate electricity from sunlight when attached to a photovoltaic cell as mentioned in this paper.
Abstract: Research on the luminescent solar concentrator (LSC) over the past thirty-odd years is reviewed. The LSC is a simple device at its heart, employing a polymeric or glass waveguide and luminescent molecules to generate electricity from sunlight when attached to a photovoltaic cell. The LSC has the potential to find extended use in an area traditionally difficult for effective use of regular photovoltaic panels: the built environment. The LSC is a device very flexible in its design, with a variety of possible shapes and colors. The primary challenge faced by the devices is increasing their photon-to-electron conversion efficiencies. A number of laboratories are working to improve the efficiency and lifetime of the LSC device, with the ultimate goal of commercializing the devices within a few years. The topics covered here relate to the efforts for reducing losses in these devices. These include studies of novel luminophores, including organic fluorescent dyes, inorganic phosphors, and quantum dots. Ways to limit the surface and internal losses are also discussed, including using organic and inorganic-based selective mirrors which allow sunlight in but reflect luminophore-emitted light, plasmonic structures to enhance emissions, novel photovoltaics, alignment of the luminophores to manipulate the path of the emitted light, and patterning of the dye layer to improve emission efficiency. Finally, some possible ‘glimpses of the future’ are offered, with additional research paths that could result in a device that makes solar energy a ubiquitous part of the urban setting, finding use as sound barriers, bus-stop roofs, awnings, windows, paving, or siding tiles.

779 citations

Proceedings ArticleDOI
04 Jun 2007
TL;DR: A PV panel model is built and tested, which is able to predict the panel behavior in different temperature and irradiance conditions, based on the single-diode five-parameters model.
Abstract: This work presents the construction of a model for a PV panel using the single-diode five-parameters model, based exclusively on data-sheet parameters. The model takes into account the series and parallel (shunt) resistance of the panel. The equivalent circuit and the basic equations of the PV cell/panel in Standard Test Conditions (STC)1 are shown, as well as the parameters extraction from the data-sheet values. The temperature dependence of the cell dark saturation current is expressed with an alternative formula, which gives better correlation with the datasheet values of the power temperature dependence. Based on these equations, a PV panel model, which is able to predict the panel behavior in different temperature and irradiance conditions, is built and tested.

773 citations

Journal ArticleDOI
TL;DR: In this article, a procedure of simulation and modelling solar cells and PV modules, working partially shadowed in Pspice environment, is presented, where simulation results have been contrasted with real measured data from a commercial PV module of 209 Wp from Siliken.

448 citations

Journal ArticleDOI
TL;DR: In this article, a novel maximum power point tracking (MPPT) system is proposed for partially shaded PV array using artificial neural network (ANN) and fuzzy logic with polar information controller.
Abstract: The one of main causes of reducing energy yield of photovoltaic systems is partially shaded conditions. Although the conventional maximum power point tracking (MPPT) control algorithms operate well under uniform insolation, they do not operate well in non-uniform insolation. The non-uniform conditions cause multiple local maximum power points on the power-voltage curve. The conventional MPPT methods cannot distinguish between the global and local peaks. Since the global maximum power point (MPP) may change within a large voltage window and also its position depends on shading patterns, it is very difficult to recognise the global operating point under partially shaded conditions. In this paper, a novel MPPT system is proposed for partially shaded PV array using artificial neural network (ANN) and fuzzy logic with polar information controller. The ANN with three layer feed-forward is trained once for several partially shaded conditions to determine the global MPP voltage. The fuzzy logic with polar information controller uses the global MPP voltage as a reference voltage to generate the required control signal for the power converter. Another objective of this study is to determine the estimated maximum power and energy generation of PV system through the same ANN structure. The effectiveness of the proposed method is demonstrated under the experimental real-time simulation technique based dSPACE real-time interface system for different interconnected PV arrays such as series-parallel, bridge link and total cross tied configurations.

353 citations