scispace - formally typeset
Search or ask a question
Author

M. Celeste Artale

Other affiliations: University of Buenos Aires
Bio: M. Celeste Artale is an academic researcher from University of Innsbruck. The author has contributed to research in topics: Galaxy & Halo. The author has an hindex of 13, co-authored 28 publications receiving 420 citations. Previous affiliations of M. Celeste Artale include University of Buenos Aires.
Topics: Galaxy, Halo, Physics, Stellar mass, Population

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors evaluate the redshift distribution of binary black hole (BBH), black hole - neutron star binary (BHNS) and binary neutron star (BNS) mergers, exploring the main sources of uncertainty: star formation rate (SFR) density, metallicity evolution, common envelope, mass transfer via Roche lobe overflow, natal kicks, core-collapse supernova model and initial mass function.
Abstract: We evaluate the redshift distribution of binary black hole (BBH), black hole - neutron star binary (BHNS) and binary neutron star (BNS) mergers, exploring the main sources of uncertainty: star formation rate (SFR) density, metallicity evolution, common envelope, mass transfer via Roche lobe overflow, natal kicks, core-collapse supernova model and initial mass function. Among binary evolution processes, uncertainties on common envelope ejection have a major impact: the local merger rate density of BNSs varies from $\sim{}10^3$ to $\sim{}20$ Gpc$^{-3}$ yr$^{-1}$ if we change the common envelope efficiency parameter from $\alpha_{\rm CE}=7$ to 0.5, while the local merger rates of BBHs and BHNSs vary by a factor of $\sim{}2-3$. The BBH merger rate changes by one order of magnitude, when $1 \sigma$ uncertainties on metallicity evolution are taken into account. In contrast, the BNS merger rate is almost insensitive to metallicity. Hence, BNSs are the ideal test bed to put constraints on uncertain binary evolution processes, such as common envelope and natal kicks. Only models assuming values of $\alpha_{\rm CE}\gtrsim{}2$ and moderately low natal kicks (depending on the ejected mass and the SN mechanism), result in a local BNS merger rate density within the 90% credible interval inferred from the second gravitational-wave transient catalogue.

89 citations

Journal ArticleDOI
TL;DR: In this paper, a new data-driven model is presented to estimate the cosmic merger rate density (MRD) evolution of CBs, by coupling catalogs of CB mergers with observational constraints on the cosmic star formation rate density and on the metallicity evolution of the Universe.
Abstract: Next generation ground-based gravitational-wave detectors will observe binary black hole (BBH) mergers up to redshift $z\gtrsim{}10$, probing the evolution of compact binary (CB) mergers across cosmic time. Here, we present a new data-driven model to estimate the cosmic merger rate density (MRD) evolution of CBs, by coupling catalogs of CB mergers with observational constraints on the cosmic star formation rate density and on the metallicity evolution of the Universe. We adopt catalogs of CB mergers derived from recent $N-$body and population-synthesis simulations, to describe the MRD of CBs formed in young star clusters (hereafter, dynamical CBs) and in the field (hereafter, isolated CBs). The local MRD of dynamical BBHs is $\mathcal{R}_{\rm BBH}=64^{+34}_{-20}$ Gpc$^{-3}$ yr$^{-1}$, consistent with the 90% credible interval from the first and second observing run (O1 and O2) of the LIGO-Virgo collaboration, and with the local MRD of isolated BBHs ($\mathcal{R}_{\rm BBH}=50^{+71}_{-37}$ Gpc$^{-3}$ yr$^{-1}$). The local MRD of dynamical and isolated black hole - neutron star binaries is $\mathcal{R}_{\rm BHNS}=41^{+33}_{-23}$ and $49^{+48}_{-34}$~Gpc$^{-3}$ yr$^{-1}$, respectively. Both values are consistent with the upper limit inferred from O1 and O2. Finally, the local MRD of dynamical binary neutron stars (BNSs, $\mathcal{R}_{\rm BNS}=151^{+59}_{-38}$ Gpc$^{-3}$ yr$^{-1}$) is a factor of two lower than the local MRD of isolated BNSs ($\mathcal{R}_{\rm BNS}=283^{+97}_{-75}$ Gpc$^{-3}$ yr$^{-1}$). The MRD for all CB classes grows with redshift, reaching its maximum at $z \in [1.5,2.5]$, and then decreases. This trend springs from the interplay between cosmic star formation rate, metallicity evolution and delay time of binary compact objects.

87 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the variations in galaxy occupancy of the dark matter haloes with the large-scale environment and halo formation time, using two state-of-the-art hydrodynamical cosmological simulations, EAGLE and Illustris.
Abstract: We investigate the variations in galaxy occupancy of the dark matter haloes with the large-scale environment and halo formation time, using two state-of-the-art hydrodynamical cosmological simulations, EAGLE and Illustris. For both simulations, we use three galaxy samples with a fixed number density ranked by stellar mass. For these samples, we find that low-mass haloes in the most dense environments are more likely to host a central galaxy than those in the least dense environments. When splitting the halo population by formation time, these relations are stronger. Hence, at a fixed low halo mass, early-formed haloes are more likely to host a central galaxy than late-formed haloes since they have had more time to assemble. The satellite occupation shows a reverse trend where early-formed haloes host fewer satellites due to having more time to merge with the central galaxy. We also analyse the stellar mass–halo mass relation for central galaxies in terms of the large-scale environment and formation time of the haloes. We find that low-mass haloes in the most dense environment host relatively more massive central galaxies. This trend is also found when splitting the halo population by age, with early-formed haloes hosting more massive galaxies. Our results are in agreement with previous findings from semi-analytical models, providing robust predictions for the occupancy variation signature in the halo occupation distribution of galaxy formation models.

76 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the stellar mass, star formation rate, metallicity and colours of the host galaxies of merging compact objects in the local Universe, by combining the results of MOBSE population-synthesis models together with galaxy catalogs from the EAGLE simulation.
Abstract: Characterizing the properties of the host galaxies of merging compact objects provides essential clues to interpret current and future gravitational-wave detections. Here, we investigate the stellar mass, star formation rate (SFR), metallicity and colours of the host galaxies of merging compact objects in the local Universe, by combining the results of MOBSE population-synthesis models together with galaxy catalogs from the EAGLE simulation. We predict that the stellar mass of the host galaxy is an excellent tracer of the merger rate per galaxy ${\rm n}_{\rm GW}$ of double neutron stars (DNSs), double black holes (DBHs) and black hole-neutron star binaries (BHNSs). We find a significant correlation also between ${\rm n}_{\rm GW}$ and SFR. As a consequence, ${\rm n}_{\rm GW}$ correlates also with the $r-$band luminosity and with the $g-r$ colour of the host galaxies. Interestingly, $\gtrsim{}60$ %, $\gtrsim{}64$ % and $\gtrsim{}73$ % of all the DNSs, BHNSs and DBHs merging in the local Universe lie in early-type galaxies, such as NGC 4993. We predict a local DNS merger rate density of $\sim{}238~{\rm Gpc}^{-3}~{\rm yr}~^{-1}$ and a DNS merger rate $\sim{}16-121$ Myr$^{-1}$ for Milky Way-like galaxies. Thus, our results are consistent with both the DNS merger rate inferred from GW170817 and the one inferred from Galactic DNSs.

72 citations

Journal ArticleDOI
TL;DR: In this paper, hierarchical black hole (BH) mergers in nuclear star clusters, globular clusters (GCs) and young star clusters (YSCs) are investigated. And the authors find that the median mass of both first and nth-generation dynamical mergers is larger in GCs and YSCs with respect to NSCs, because the lighter BHs are ejected by supernova kicks from the lower-mass clusters.
Abstract: We explore hierarchical black hole (BH) mergers in nuclear star clusters (NSCs), globular clusters (GCs) and young star clusters (YSCs), accounting for both original and dynamically assembled binary BHs (BBHs). We find that the median mass of both first- and nth-generation dynamical mergers is larger in GCs and YSCs with respect to NSCs, because the lighter BHs are ejected by supernova kicks from the lower-mass clusters. Also, first- and nth-generation BH masses are strongly affected by the metallicity of the progenitor stars: the median mass of the primary BH of a nth-generation merger is $\sim{}24-38$ M$_\odot$ ($\sim{}9-15$ M$_\odot$) in metal-poor (metal-rich) NSCs. The maximum BH mass mainly depends on the escape velocity: BHs with mass up to several thousand M$_\odot$ form in NSCs, while YSCs and GCs host BHs with mass up to several hundred M$_\odot$. Furthermore, we calculate the fraction of mergers with at least one component in the pair-instability mass gap ($f_{\rm PI}$) and in the intermediate-mass BH regime ($f_{\rm IMBH}$). In the fiducial model for dynamical BBHs with metallicity $Z=0.002$, we find $f_{\rm PI}\approx{}0.05$, $0.02$ and $0.007$ ($f_{\rm IMBH}\approx{}0.01$, $0.002$ and $0.001$) in NSCs, GCs and YSCs, respectively. Both $f_{\rm PI}$ and $f_{\rm IMBH}$ drop by at least one order of magnitude at solar metallicity. Finally, we investigate the formation of GW190521 by assuming that it is either a nearly equal-mass BBH or an intermediate-mass ratio inspiral.

64 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
01 Jan 2017
TL;DR: AGILE as discussed by the authors is an ASI space mission developed with programmatic support by INAF and INFN, which includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Abstract: This program was supported by the the Kavli Foundation, Danish National Research Foundation, the Niels Bohr International Academy, and the DARK Cosmology Centre. The UCSC group is supported in part by NSF grant AST-1518052, the Gordon & Betty Moore Foundation, the Heising-Simons Foundation, generous donations from many individuals through a UCSC Giving Day grant, and from fellowships from the Alfred P. Sloan Foundation (R.J.F.), the David and Lucile Packard Foundation (R.J.F. and E.R.) and the Niels Bohr Professorship from the DNRF (E.R.). AMB acknowledges support from a UCMEXUS-CONACYT Doctoral Fellowship. Support for this work was provided by NASA through Hubble Fellowship grants HST-HF-51348.001 (B.J.S.) and HST-HF-51373.001 (M.R.D.) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This paper includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.r (AGILE) The AGILE Team thanks the ASI management, the technical staff at the ASI Malindi ground station, the technical support team at the ASI Space Science Data Center, and the Fucino AGILE Mission Operation Center. AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant No. I/028/12/2. We also thank INAF, Italian Institute of Astrophysics, and ASI, Italian Space Agency.r (ANTARES) The ANTARES Collaboration acknowledges the financial support of: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et aux energies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cite d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania;...

1,270 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies and haloes over an exceptionally large range of scales.
Abstract: Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ~ 10 h/Mpc by 20%. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with SDSS at its mean redshift z ~ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range 10^9-10^10 Msun/h^2. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy auto-correlation function depends strongly on stellar mass and redshift. Its power-law slope gamma is nearly invariant with stellar mass, but declines from gamma ~ 1.8 at redshift z=0 to gamma ~ 1.6 at redshift z ~ 1, beyond which the slope steepens again. We detect significant scale-dependencies in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ~5%.

1,025 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +1135 moreInstitutions (139)
TL;DR: In this article, the authors present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves.
Abstract: We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

804 citations

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1428 moreInstitutions (155)
TL;DR: In this article, the population of 47 compact binary mergers detected with a false-alarm rate of 0.614 were dynamically assembled, and the authors found that the BBH rate likely increases with redshift, but not faster than the star formation rate.
Abstract: We report on the population of 47 compact binary mergers detected with a false-alarm rate of 0.01 are dynamically assembled. Third, we estimate merger rates, finding RBBH = 23.9-+8.614.3 Gpc-3 yr-1 for BBHs and RBNS = 320-+240490 Gpc-3 yr-1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility) but not faster than the star formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

468 citations