scispace - formally typeset
Search or ask a question
Author

M. Celeste Simon

Bio: M. Celeste Simon is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Hypoxia-inducible factors & Transcription factor. The author has an hindex of 98, co-authored 252 publications receiving 42384 citations. Previous affiliations of M. Celeste Simon include Harvard University & Howard Hughes Medical Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In mammals, the primary transcriptional response to hypoxic stress is mediated by the hypoxia-inducible factors, and the HIFα subunits are intricately responsive to numerous other factors, including factor-inhibiting HIF1α, sirtuins, and metabolites.

1,919 citations

Journal ArticleDOI
TL;DR: A mitochondrion-to-cytosol signaling pathway that links mitochondrial dysfunction to oncogenic events is described, suggesting a mechanistic link between SDH mutations and HIF-1alpha induction, providing an explanation for the highly vascular tumors that develop in the absence of VHL mutations.

1,723 citations

Journal ArticleDOI
09 Feb 1996-Cell
TL;DR: Cell and tissues from Stat1(-1-1) mice were unresponsive to IFN, but remained responsive to all other cytokines tested, indicating that STAT1 appears to be specific for IFN pathways that are essential for viability in the face of otherwise innocuous pathogens.

1,554 citations

Journal ArticleDOI
22 Dec 2000-Cell
TL;DR: Analysis of Period gene expression in the suprachiasmatic nucleus (SCN) indicates that these behavioral phenotypes arise from loss of circadian function at the molecular level, and provides genetic evidence that MOP3 is the bona fide heterodimeric partner of mCLOCK.

1,440 citations


Cited by
More filters
Journal ArticleDOI
22 May 2009-Science
TL;DR: It is proposed that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass needed to produce a new cell.
Abstract: In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed “the Warburg effect.” Aerobic glycolysis is an inefficient way to generate adenosine 5′-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.

12,380 citations

Journal ArticleDOI
TL;DR: The description outlined here facilitates the understanding of factors that favour mitochondrial ROS production and develops better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
Abstract: The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2•−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2•− production within the matrix of mammalian mitochondria. The flux of O2•− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2•− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2•− production is far lower. The generation of O2•− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2•− generation by mitochondria in vivo from O2•−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.

6,371 citations

Journal ArticleDOI
TL;DR: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion.
Abstract: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion. Intratumoral hypoxia and genetic alterations can lead to HIF-1alpha overexpression, which has been associated with increased patient mortality in several cancer types. In preclinical studies, inhibition of HIF-1 activity has marked effects on tumour growth. Efforts are underway to identify inhibitors of HIF-1 and to test their efficacy as anticancer therapeutics.

6,024 citations

Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: Those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration are discussed.

5,505 citations