scispace - formally typeset
Search or ask a question
Author

M. Di Penta

Bio: M. Di Penta is an academic researcher from University of Sannio. The author has contributed to research in topics: Software maintenance & Software system. The author has an hindex of 39, co-authored 78 publications receiving 4075 citations. Previous affiliations of M. Di Penta include École Polytechnique & University of Naples Federico II.


Papers
More filters
Proceedings ArticleDOI
11 Jul 2005
TL;DR: This paper proposes an approach to trigger and perform composite service replanning during execution and an evaluation has been performed simulating execution and replanting on a set of composite service workflows.
Abstract: Run-time service discovery and late-binding constitute some of the most challenging issues of service-oriented software engineering. For late-binding to be effective in the case of composite services, a QoS-aware composition mechanism is needed. This means determining the set of services that, once composed, not only will perform the required functionality, but also will best contribute to achieve the level of QoS promised in service level agreements (SLAs). However, QoS-aware composition relies on estimated QoS values and workflow execution paths previously obtained using a monitoring mechanism. At run-time, the actual QoS values may deviate from the estimations, or the execution path may not be the one foreseen. These changes could increase the risk of breaking SLAs and obtaining a poor QoS. Such a risk could be avoided by replanning the service bindings of the workflow slice still to be executed. This paper proposes an approach to trigger and perform composite service replanning during execution. An evaluation has been performed simulating execution and replanning on a set of composite service workflows.

290 citations

Proceedings ArticleDOI
21 Mar 2007
TL;DR: This paper combines clone detection and co-change analysis to investigate how clones are maintained when an evolution activity or a bug fixing impact a source code fragment belonging to a clone class.
Abstract: Despite the conventional wisdom concerning the risks related to the use of source code cloning as a software development strategy, several studies appeared in literature indicated that this is not true. In most cases clones are properly maintained and, when this does not happen, is because cloned code evolves independently. Stemming from previous works, this paper combines clone detection and co-change analysis to investigate how clones are maintained when an evolution activity or a bug fixing impact a source code fragment belonging to a clone class. The two case studies reported confirm that, either for bug fixing or for evolution purposes, most of the cloned code is consistently maintained during the same co-change or during temporally close co-changes

223 citations

Journal ArticleDOI
TL;DR: This paper provides users and system integrators with an overview of service-oriented architecture testing's fundamental technical issues and solutions, focusing on Web services as a practical implementation of the SOA model.
Abstract: This paper provides users and system integrators with an overview of service-oriented architecture (SOA) testing's fundamental technical issues and solutions, focusing on Web services as a practical implementation of the SOA model. The paper discusses SOA testing across two dimensions: testing perspectives, wherein various stakeholders have different needs and raise different testing requirements; and testing level, wherein each SOA testing level poses unique challenges

216 citations

Proceedings ArticleDOI
23 May 2007
TL;DR: An overview of the field of reverse engineering is presented, main achievements and areas of application are reviewed, and key open research issues for the future are highlighted.
Abstract: Comprehending and modifying software is at the heart of many software engineering tasks, and this explains the growing interest that software reverse engineering has gained in the last 20 years. Broadly speaking, reverse engineering is the process of analyzing a subject system to create representations of the system at a higher level of abstraction. This paper briefly presents an overview of the field of reverse engineering, reviews main achievements and areas of application, and highlights key open research issues for the future.

170 citations

Journal ArticleDOI
TL;DR: The hypothesis that the Linux system does not contain a relevant fraction of code duplication is supported, suggesting a fairly stable structure, evolving smoothly without any evidence of degradation.
Abstract: Identifying code duplication in large multi-platform software systems is a challenging problem. This is due to a variety of reasons including the presence of high-level programming languages and structures interleaved with hardware-dependent low-level resources and assembler code, the use of GUI-based configuration scripts generating commands to compile the system, and the extremely high number of possible different configurations. This paper studies the extent and the evolution of code duplications in the Linux kernel. Linux is a large, multi-platform software system; it is based on the Open Source concept, and so there are no obstacles in discussing its implementation. In addition, it is decidedly too large to be examined manually: the current Linux kernel release (2.4.18) is about three million LOCs. Nineteen releases, from 2.4.0 to 2.4.18, were processed and analyzed, identifying code duplication among Linux subsystems by means of a metric-based approach. The obtained results support the hypothesis that the Linux system does not contain a relevant fraction of code duplication. Furthermore, code duplication tends to remain stable across releases, thus suggesting a fairly stable structure, evolving smoothly without any evidence of degradation.

149 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Posted Content
TL;DR: In this paper, the authors provide a unified and comprehensive theory of structural time series models, including a detailed treatment of the Kalman filter for modeling economic and social time series, and address the special problems which the treatment of such series poses.
Abstract: In this book, Andrew Harvey sets out to provide a unified and comprehensive theory of structural time series models. Unlike the traditional ARIMA models, structural time series models consist explicitly of unobserved components, such as trends and seasonals, which have a direct interpretation. As a result the model selection methodology associated with structural models is much closer to econometric methodology. The link with econometrics is made even closer by the natural way in which the models can be extended to include explanatory variables and to cope with multivariate time series. From the technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. The book includes a detailed treatment of the Kalman filter. This technique was originally developed in control engineering, but is becoming increasingly important in fields such as economics and operations research. This book is concerned primarily with modelling economic and social time series, and with addressing the special problems which the treatment of such series poses. The properties of the models and the methodological techniques used to select them are illustrated with various applications. These range from the modellling of trends and cycles in US macroeconomic time series to to an evaluation of the effects of seat belt legislation in the UK.

4,252 citations

Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations

Book
01 Jan 2009
TL;DR: In this paper, the authors define testing as the process of applying a few well-defined, general-purpose test criteria to a structure or model of the software, and present an innovative approach to explaining the process.
Abstract: Extensively class tested, this text takes an innovative approach to explaining the process of software testing: it defines testing as the process of applying a few well-defined, general-purpose test criteria to a structure or model of the software. The structure of the text directly reflects the pedagogical approach and incorporates the latest innovations in testing, including techniques to test modern types of software such as OO, web applications, and embedded software.

1,126 citations

MonographDOI
01 Jan 2008
TL;DR: The structure of the text directly reflects the pedagogical approach and incorporates the latest innovations in testing, including techniques to test modern types of software such as OO, web applications and embedded software.
Abstract: Extensively class tested, this text takes an innovative approach to explaining the process of software testing: it defines testing as the process of applying a few well-defined, general-purpose test criteria to a structure or model of the software. The structure of the text directly reflects the pedagogical approach and incorporates the latest innovations in testing, including techniques to test modern types of software such as OO, web applications, and embedded software.

1,079 citations