scispace - formally typeset
Search or ask a question
Author

M Doreau

Bio: M Doreau is an academic researcher from Institut national de la recherche agronomique. The author has contributed to research in topics: Rumen & Lipolysis. The author has an hindex of 3, co-authored 3 publications receiving 320 citations.

Papers
More filters
Journal ArticleDOI
01 Aug 1999
TL;DR: The review ends with a consideration of the limits to the modification of ruminant fats, involving considerations of consumer acceptance as well as animal welfare and environmental effects.
Abstract: Beef and dairy products suffer from a negative health image, related to the nature of their lipid fraction. Rumen lipid metabolism involves the presence of saturated lipids in ruminant tissues. Lipolysis, fatty acid biohydrogenation and formation of microbial fatty acids in the rumen and their effects on rumen outflow of fatty acids are discussed. Special emphasis is given to the formation of trans-fatty acids and the possibilities of decreasing biohydrogenation. Small differences in intestinal digestibilities of fatty acids are mentioned, followed by a discussion on transfer of absorbed fatty acids into milk and adipose tissue lipids. The preferential retention of polyunsaturated fatty acids as well as the balance between synthesis and incorporation of fatty acids in tissues is described. Dietary means for the modification of milk fat are listed, with special emphasis on the possibilities for enrichment in polyunsaturated fatty acids and the presence of conjugated linoleic acids. A description of the nature and development of fat depots in beef cattle is followed by a discussion of breed, conformation and feed effects on adipose tissue distribution and fatty acid composition. Special emphasis is given to the very lean Belgian Blue double-muscled breed. The review ends with a consideration of the limits to the modification of ruminant fats, involving considerations of consumer acceptance as well as animal welfare and environmental effects.

280 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Improved gas-liquid and high performance liquid chromatography were used and data on the trans and cis isomers of fatty acid and of conjugated linoleic acids are given, and the analyses are described.

881 citations

Journal ArticleDOI
TL;DR: More studies in rodents and humans fed dairy products modified by changing ruminant diet are required before recommending a larger use of lipid sources and how to combine them with the different feeding systems used by dairy farmers.
Abstract: The potential to modify the milk fatty acid (FA) composition by changing the cow or goat diets is reviewed. Ruminal biohydrogenation (RBH), combined with mammary lipogenic and A-9 desaturation pathways, considerably modifies the profile of dietary FA and thus milk composition. The pasture has major effects by decreasing saturated FA and increasing FA considered as favorable for human health (c9-18:1, 18:3n-3 and c9t11-CLA), compared to winter diets, especially those based on maize silage and concentrates. Plant lipid supplements have effects similar to pasture, especially linseed, but they increase to a larger extent, simultaneously several trans isomers of 18:1 and, conjugated or non-conjugated 18:2, especially when added to maize silage or concentrate-rich diets. The goat responds better for milk 18:3n-3 and c9t11-CLA, and sometimes less for c9-18:1, and is less prone to the RBH trans-11 to trans-10 shift, which has been shown to be time dependent in the cow. The respective physiological roles of most milk trans FA have not been studied to date, and more studies in rodents and humans fed dairy products modified by changing ruminant diet are required before recommending a larger use of lipid sources and how to combine them with the different feeding systems used by dairy farmers.

748 citations

Journal ArticleDOI
TL;DR: The potential of dietary factors to increase the mean CLA content in cow milk fat is about 300% above basal values, there is, however, a need to evaluate how the different feeding strategies could change the other aspects of milk fat quality.
Abstract: After a brief survey of metabolic pathways and nutrient fluxes involved in mammary lipogenesis, this review summarises the known effects of diet on ruminant milk fat composition. Special attention is given to fatty acids that could play a positive role for human health, such as butyric acid, oleic acid, C18 to C22 polyunsaturated fatty acids and conjugated linoleic acid (CLA). The efficiency of the transfer of C18:2, C18:3, C20:5, C22:5 and C22:6, from the duodenum to the milk, is reviewed. The main dietary factors taken into account are the nature of forages, including pasture, and the supplementation of dairy rations with protected or unprotected vegetable or fish oils. Dose-response curves of milk CLA are reviewed for different fat supplements, as well as the non-linear relationship between milk CLA and trans C18:1. The potential of dietary factors to increase the mean CLA content in cow milk fat is about 300% above basal values. There is, however, a need to evaluate how the different feeding strategies could change the other aspects of milk fat quality.

700 citations

Journal ArticleDOI
TL;DR: Although there is potential for genetic change, incorporating fatty acid composition as a goal in classical breeding programs does not seem worthwhile at the present and biochemical and molecular genetic studies should be encouraged to unravel the mechanisms responsible for differences in the metabolism and incorporation of specific fatty acids in meat.
Abstract: Meat fatty acid composition is influenced by genetic factors, although to a lower extent than dietary factors. The species is the major source of variation in fatty acid composition with ruminant meats being more saturated as a result of biohydrogenation in the rumen compared to the meat of monogastric animals. The level of fatness also has an effect on the meat fatty acid composition. The contents of saturated (SFA) and monounsaturated (MUFA) fatty acids increase faster with increasing fatness than does the content of PUFA, resulting in a decrease in the relative proportion of PUFA and consequently in the polyunsaturated/saturated fatty acids (P/S) ratio. The dilution of phospholipids with triacylglycerols and the distinct differences in fatty acid composition of these fractions explain the decrease in the P/S ratio with increasing fatness. An exponential model was fitted to the literature data for beef and showed a sharply increasing P/S ratio at low levels of intramuscular fat. Lowering the fat level of beef is thus more efficient in increasing the P/S ratio than dietary interventions. For pork, the intramuscular fat level also affects the P/S ratio, but nutrition will have a larger impact. The fat level also influences the n-6/n-3 PUFA ratio, due to the difference of this ratio in polar and neutral lipids. However, these effects are much smaller than the effects that can be achieved by dietary means. Differences in fatty acid composition between breeds and genotypes can be largely explained by differences in fatness. However, after correction for fat level, breed or genotype differences in the MUFA/SFA ratio and in the longer chain C20 and C22 PUFA metabolism have been reported, reflecting the possible genetic differences in fatty acid metabolism. Breed differences in meat conjugated linoleic acid (CLA) content have not yet been reported, but the c9t11CLA content in meat is positively related to the total fat content. Heritabilities and genetic correlations for the proportion of certain fatty acids have been estimated in a few studies, and correspond to the observations at the phenotypic level in relation to the intramuscular fat level. Although there is potential for genetic change, incorporating fatty acid composition as a goal in classical breeding programs does not seem worthwhile at the present. Enzyme activities have been measured in a few studies, but are not able to explain between-animal variation in fatty acid composition. Biochemical and molecular genetic studies should be encouraged to unravel the mechanisms responsible for differences in the metabolism and incorporation of specific fatty acids in meat. fatty acids / meat / genetics / P/S ratio

666 citations

Journal ArticleDOI
TL;DR: Attempts to increase the intramuscular c9t11CLA content was accomplished by feeding ruminants n-3 rich diets, fish oil or high concentrate diets rich in linoleic acid (LA), which resulted in a more favourable n-6/n-3 ratio in the meat while the polyunsaturated fatty acid/saturated fatty acids (P/S) ratio was less affected.

607 citations