scispace - formally typeset
Search or ask a question
Author

M. Elizabeth Halloran

Bio: M. Elizabeth Halloran is an academic researcher from Fred Hutchinson Cancer Research Center. The author has contributed to research in topics: Vaccination & Vaccine efficacy. The author has an hindex of 56, co-authored 248 publications receiving 15685 citations. Previous affiliations of M. Elizabeth Halloran include University of Washington & Washington University in St. Louis.


Papers
More filters
Journal ArticleDOI
06 Mar 2020-Science
TL;DR: The results suggest that early detection, hand washing, self-isolation, and household quarantine will likely be more effective than travel restrictions at mitigating this pandemic, and sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.
Abstract: Motivated by the rapid spread of coronavirus disease 2019 (COVID-19) in mainland China, we use a global metapopulation disease transmission model to project the impact of travel limitations on the national and international spread of the epidemic. The model is calibrated on the basis of internationally reported cases and shows that, at the start of the travel ban from Wuhan on 23 January 2020, most Chinese cities had already received many infected travelers. The travel quarantine of Wuhan delayed the overall epidemic progression by only 3 to 5 days in mainland China but had a more marked effect on the international scale, where case importations were reduced by nearly 80% until mid-February. Modeling results also indicate that sustained 90% travel restrictions to and from mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community.

2,949 citations

Journal ArticleDOI
12 Aug 2005-Science
TL;DR: Investigation of the effectiveness of targeted antiviral prophylaxis, quarantine, and pre-vaccination in containing an emerging influenza strain at the source showed that a prepared response with targeted antivirals would have a high probability of containing the disease.
Abstract: Highly pathogenic avian influenza A (subtype H5N1) is threatening to cause a human pandemic of potentially devastating proportions. We used a stochastic influenza simulation model for rural Southeast Asia to investigate the effectiveness of targeted antiviral prophylaxis, quarantine, and pre-vaccination in containing an emerging influenza strain at the source. If the basic reproductive number ( R 0 ) was below 1.60, our simulations showed that a prepared response with targeted antivirals would have a high probability of containing the disease. In that case, an antiviral agent stockpile on the order of 100,000 to 1 million courses for treatment and prophylaxis would be sufficient. If pre-vaccination occurred, then targeted antiviral prophylaxis could be effective for containing strains with an R 0 as high as 2.1. Combinations of targeted antiviral prophylaxis, pre-vaccination, and quarantine could contain strains with an R 0 as high as 2.4.

1,206 citations

Journal ArticleDOI
TL;DR: Targeted antiviral prophylaxis has potential as an effective measure for containing influenza until adequate quantities of vaccine are available and is nearly as effective as vaccinating 80% of the population.
Abstract: For the first wave of pandemic influenza or a bioterrorist influenza attack, antiviral agents would be one of the few options to contain the epidemic in the United States until adequate supplies of vaccine were available. The authors use stochastic epidemic simulations to investigate the effectiveness of targeted antiviral prophylaxis to contain influenza. In this strategy, close contacts of suspected index influenza cases take antiviral agents prophylactically. The authors compare targeted antiviral prophylaxis with vaccination strategies. They model an influenza pandemic or bioterrorist attack for an agent similar to influenza A virus (H2N2) that caused the Asian influenza pandemic of 1957-1958. In the absence of intervention, the model predicts an influenza illness attack rate of 33% of the population (95% confidence interval (CI): 30, 37) and an influenza death rate of 0.58 deaths/1,000 persons (95% Cl: 0.4, 0.8). With the use of targeted antiviral prophylaxis, if 80% of the exposed persons maintained prophylaxis for up to 8 weeks, the epidemic would be contained, and the model predicts a reduction to an illness attack rate of 2% (95% Cl: 0.2, 16) and a death rate of 0.04 deaths/1,000 persons (95% CI: 0.0003, 0.25). Such antiviral prophylaxis is nearly as effective as vaccinating 80% of the population. Vaccinating 80% of the children aged less than 19 years is almost as effective as vaccinating 80% of the population. Targeted antiviral prophylaxis has potential as an effective measure for containing influenza until adequate quantities of vaccine are available.

723 citations

Journal ArticleDOI
17 Nov 2017-Science
TL;DR: Using multiple statistical approaches to study a long-term pediatric cohort in Nicaragua, it is shown that risk of severe dengue disease is highest within a narrow range of preexisting anti-DENV antibody titers, which has major implications for vaccines against flaviviruses.
Abstract: For dengue viruses 1 to 4 (DENV1-4), a specific range of antibody titer has been shown to enhance viral replication in vitro and severe disease in animal models. Although suspected, such antibody-dependent enhancement of severe disease has not been shown to occur in humans. Using multiple statistical approaches to study a long-term pediatric cohort in Nicaragua, we show that risk of severe dengue disease is highest within a narrow range of preexisting anti-DENV antibody titers. By contrast, we observe protection from all symptomatic dengue disease at high antibody titers. Thus, immune correlates of severe dengue must be evaluated separately from correlates of protection against symptomatic disease. These results have implications for studies of dengue pathogenesis and for vaccine development, because enhancement, not just lack of protection, is of concern.

721 citations

Journal ArticleDOI
TL;DR: An agent-based model of SARS-CoV-2 transmission shows that testing, contact tracing and household quarantine could keep new COVID-19 waves under control while allowing the reopening of the economy with minimal social-distancing interventions.
Abstract: While severe social-distancing measures have proven effective in slowing the coronavirus disease 2019 (COVID-19) pandemic, second-wave scenarios are likely to emerge as restrictions are lifted. Here we integrate anonymized, geolocalized mobility data with census and demographic data to build a detailed agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in the Boston metropolitan area. We find that a period of strict social distancing followed by a robust level of testing, contact-tracing and household quarantine could keep the disease within the capacity of the healthcare system while enabling the reopening of economic activities. Our results show that a response system based on enhanced testing and contact tracing can have a major role in relaxing social-distancing interventions in the absence of herd immunity against SARS-CoV-2.

625 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: Threshold theorems involving the basic reproduction number, the contact number, and the replacement number $R$ are reviewed for classic SIR epidemic and endemic models and results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups.
Abstract: Many models for the spread of infectious diseases in populations have been analyzed mathematically and applied to specific diseases. Threshold theorems involving the basic reproduction number $R_{0}$, the contact number $\sigma$, and the replacement number $R$ are reviewed for the classic SIR epidemic and endemic models. Similar results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups. Values of $R_{0}$ and $\sigma$ are estimated for various diseases including measles in Niger and pertussis in the United States. Previous models with age structure, heterogeneity, and spatial structure are surveyed.

5,915 citations

Journal Article
TL;DR: This report updates the 2000 recommendations by the Advisory Committee on Immunization Practices on the use of influenza vaccine and antiviral agents with new or updated information regarding the cost-effectiveness of influenza vaccination and the 2001-2002 trivalent vaccine virus strains.
Abstract: This report updates the 2002 recommendations by the Advisory Committee on Immunization Practices (ACIP) on the use of influenza vaccine and antiviral agents (CDC. Prevention and Control of Influenza: Recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2002;51 [No. RR-3]:1-31). The 2003 recommendations include new or updated information regarding 1) the timing of influenza vaccination by age and risk group; 2) influenza vaccine for children aged 6-23 months; 3) the 2003-2004 trivalent inactivated vaccine virus strains: A/Moscow/10/99 (H3N2)-like, A/New Caledonia/20/99 (H1N1)-like, and B/Hong Kong/330/2001-like antigens (for the A/Moscow/10/99 [H3N2]-like antigen, manufacturers will use the antigenically equivalent A/Panama/2007/99 [H3N2] virus, and for the B/Hong Kong/330/2001-like antigen, manufacturers will use either B/Hong Kong/330/2001 or the antigenically equivalent B/Hong Kong/1434/2002); 4) availability of certain influenza vaccine doses with reduced thimerosal content, including single 0.25 mL-dose syringes; and 5) manufacturers of influenza vaccine for the U.S. market. Although the optimal time to vaccinate against influenza is October and November, vaccination in December and later continues to be strongly recommended A link to this report and other information regarding influenza can be accessed at http://www.cdc.gov/ncidod/diseases/flu/fluvirus.htm.

5,334 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations