scispace - formally typeset
Search or ask a question
Author

M. Exler

Bio: M. Exler is an academic researcher. The author has contributed to research in topics: Hybrid Monte Carlo & Monte Carlo integration. The author has an hindex of 1, co-authored 1 publications receiving 216 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a Monte Carlo algorithm for doing simulations in classical statistical physics in a different way is described, where instead of sampling the probability distribution at a fixed temperature, a random walk is performed in energy space to extract an estimate for the density of states.
Abstract: We describe a Monte Carlo algorithm for doing simulations in classical statistical physics in a different way. Instead of sampling the probability distribution at a fixed temperature, a random walk is performed in energy space to extract an estimate for the density of states. The probability can be computed at any temperature by weighting the density of states by the appropriate Boltzmann factor. Thermodynamic properties can be determined from suitable derivatives of the partition function and, unlike “standard” methods, the free energy and entropy can also be computed directly. To demonstrate the simplicity and power of the algorithm, we apply it to models exhibiting first-order or second-order phase transitions.

237 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors introduce an entropy-forming-ability descriptor capturing the synthesizability of high-entropy materials, and apply the model to the discovery of new refractory metal carbides.
Abstract: High-entropy materials have attracted considerable interest due to the combination of useful properties and promising applications. Predicting their formation remains the major hindrance to the discovery of new systems. Here we propose a descriptor-entropy forming ability-for addressing synthesizability from first principles. The formalism, based on the energy distribution spectrum of randomized calculations, captures the accessibility of equally-sampled states near the ground state and quantifies configurational disorder capable of stabilizing high-entropy homogeneous phases. The methodology is applied to disordered refractory 5-metal carbides-promising candidates for high-hardness applications. The descriptor correctly predicts the ease with which compositions can be experimentally synthesized as rock-salt high-entropy homogeneous phases, validating the ansatz, and in some cases, going beyond intuition. Several of these materials exhibit hardness up to 50% higher than rule of mixtures estimations. The entropy descriptor method has the potential to accelerate the search for high-entropy systems by rationally combining first principles with experimental synthesis and characterization.

511 citations

Journal ArticleDOI
TL;DR: State-of-the-art Monte Carlo techniques for computing fluid coexistence properties (Gibbs simulations) and adsorption simulations in nanoporous materials such as zeolites and metal–organic frameworks are reviewed.
Abstract: We review state-of-the-art Monte Carlo (MC) techniques for computing fluid coexistence properties (Gibbs simulations) and adsorption simulations in nanoporous materials such as zeolites and metal–o...

324 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss their philosophy for carefully developing or selecting appropriate models, performing, and analyzing polymer simulations, highlighting best practices, key challenges, and important advances in model development/selection, computational method choices, advanced sampling met...
Abstract: Molecular modeling and simulations are invaluable tools for the polymer science and engineering community. These computational approaches enable predictions and provide explanations of experimentally observed macromolecular structure, dynamics, thermodynamics, and microscopic and macroscopic material properties. With recent advances in computing power, polymer simulations can synergistically inform, guide, and complement in vitro macromolecular materials design and discovery efforts. To ensure that this growing power of simulations is harnessed correctly, and meaningful results are achieved, care must be taken to ensure the validity and reproducibility of these simulations. With these considerations in mind, in this Perspective we discuss our philosophy for carefully developing or selecting appropriate models, performing, and analyzing polymer simulations. We highlight best practices, key challenges, and important advances in model development/selection, computational method choices, advanced sampling met...

256 citations

Journal ArticleDOI
TL;DR: In this paper, the possibility of a reversible liquid-liquid transition in supercooled water and related systems was examined using numerical simulation and it was shown that at no range of temperatures and pressures is there more than a single liquid basin, even at conditions where amorphous behavior is unstable with respect to the crystal.
Abstract: We use numerical simulation to examine the possibility of a reversible liquid-liquid transition in supercooled water and related systems. In particular, for two atomistic models of water, we have computed free energies as functions of multiple order parameters, where one is density and another distinguishes crystal from liquid. For a range of temperatures and pressures, separate free energy basins for liquid and crystal are found, conditions of phase coexistence between these phases are demonstrated, and time scales for equilibration are determined. We find that at no range of temperatures and pressures is there more than a single liquid basin, even at conditions where amorphous behavior is unstable with respect to the crystal. We find a similar result for a related model of silicon. This result excludes the possibility of the proposed liquid-liquid critical point for the models we have studied. Further, we argue that behaviors others have attributed to a liquid-liquid transition in water and related systems are in fact reflections of transitions between liquid and crystal.

228 citations

Journal ArticleDOI
TL;DR: It is shown how a wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition, and robust methods for computing reversible free energy surfaces are described, and effects of electrostatic boundary conditions are considered.
Abstract: This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [J. Chem. Phys. 135, 134503 (2011) and arXiv:1107.0337v2]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, SW silicon and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative nonequilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

225 citations