scispace - formally typeset
Search or ask a question
Author

M.F. Merienne

Bio: M.F. Merienne is an academic researcher from University of Reims Champagne-Ardenne. The author has contributed to research in topics: Absorption spectroscopy & Absorption (electromagnetic radiation). The author has an hindex of 19, co-authored 32 publications receiving 1922 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors measured the NO2 absorption cross-section from 42 000 to 10 000 cm−1 (238-1000 nm) with a Fourier transform spectrometer (at the resolution of 2 cm− 1, 0.01 nm at 240 nm to 0.2 nm at 1000 nm).
Abstract: The NO2 absorption cross-section has been measured from 42 000 to 10 000 cm−1 (238–1000 nm) with a Fourier transform spectrometer (at the resolution of 2 cm−1, 0.01 nm at 240 nm to 0.2 nm at 1000 nm) and a 5 m temperature controlled multiple reflection cell. The uncertainty on the cross-section is estimated to be less than 3% below 40 000 cm−1 (λ > 250 nm) at 294 K, 3% below 30 000 cm−1 (λ > 333 nm) at 220 K, but reaches 10% for higher wavenumbers. Temperature and pressure effects have been observed. Comparison with data from the literature generally shows a good agreement for wavenumbers between 37 500 and 20 000 cm−1 (267–500 nm). Outside these limits, the difference can reach several percent.

684 citations

Journal ArticleDOI
TL;DR: In this article, high-resolution NO2 absorption cross sections have been obtained in the near-IR and visible regions using a Fourier transform spectrometer coupled to a multiple reflection cell.
Abstract: [1] High-resolution NO2 absorption cross sections have been obtained in the near-IR (NIR) and visible regions using a Fourier transform spectrometer coupled to a multiple reflection cell. Spectra were recorded at 0.05 cm−1 in the NIR region (10,800–15,100 cm−1) and at 0.1 cm−1 in the visible region (13,800–26,000 cm−1), under various pressure conditions (pure NO2 and NO2/air mixtures) and at three temperatures (220, 240, and 294 K). The effects of the temperature and the pressure on the NO2 cross sections have been investigated. As expected, an increase of temperature results in a decrease of the absorption at the maxima of the absorption bands and an increase at the minima. From the measurements performed with pure NO2 at different temperatures a linear regression of the cross section with temperature has been carried out. This enabled the cross sections to be reproduced within 2% at room temperature and 7% at the lower temperatures. The variation of the cross sections with the total pressure of NO2/air mixtures has also been investigated at high resolution.

128 citations

Journal ArticleDOI
TL;DR: In this article, Fourier transform spectrometer measurements for water are presented, which cover the near infrared, visible, and near ultraviolet regions and contain water transitions belonging to all polyads from 3 nu to 8 nu.
Abstract: New long path length, high resolution, Fourier transform spectrometer measurements for water are presented. These spectra cover the near infrared, visible, and near ultraviolet regions and contain water transitions belonging to all polyads from 3 nu to 8 nu. Transitions in the range 13 100-21 400 cm(-1) are analyzed using line lists computed using variational first-principles calculations. 2286 new transitions are assigned to (H2O)-O-16. These result in the observation of transitions in 15 new overtone and combination bands of water. Energy levels for these and other newly observed levels are presented. It is suggested that local mode rather than normal mode vibrational assignments are more appropriate for the vibrational states of water in polyads 4 nu and above. (C) 1999 American Institute of Physics. [S0021-9606(99)00830-2].

122 citations

Journal ArticleDOI
TL;DR: Corrections to the generally accepted analysis procedures used to resolve the convolution problem are proposed.
Abstract: Absorption spectroscopy, which is widely used for concentration measurements of tropospheric and stratospheric compounds, requires precise values of the absorption cross-sections of the measured species. NO(2), O(2) and its collision-induced absorption spectrum, and H(2)O absorption cross-sections have been measured at temperature and pressure conditions prevailing in the Earth's atmosphere. Corrections to the generally accepted analysis procedures used to resolve the convolution problem are also proposed.

121 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented new measurements of water vapor line parameters in the 26,000 − 13, 000 cm − 1 spectral region, combining a high-resolution Fourier transform spectrometer with a long-path absorption cell, thus allowing the observation of very weak, previously unobserved, lines.
Abstract: The radiative properties of water vapor play an important role in the physical and chemical processes occurring in the atmosphere. Accurate knowledge of the line parameters for this species is therefore needed. This work presents new measurements of water vapor line parameters in the 26 000– 13 000 cm −1 spectral region. The measurements were obtained by combining a high-resolution Fourier transform spectrometer with a long-path absorption cell, thus allowing the observation of very weak, previously unobserved, lines. A total of more than 9000 lines have been identified and their position, integrated cross section and self-broadening parameter have been determined. The dependence of the line parameters on nitrogen buffer gas pressure (0– 800 hPa ) has also been studied. The complete line list presented here is primarily compared to the HITRAN spectroscopic database, most frequently used in atmospheric calculations.

120 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

Journal ArticleDOI
TL;DR: The HITRAN compilation consists of several components useful for radiative transfer calculation codes: high-resolution spectroscopic parameters of molecules in the gas phase, absorption cross-sections for molecules with very dense spectral features, aerosol refractive indices, ultraviolet line-by-line parameters and absorptionCross-sections, and associated database management software.
Abstract: This paper describes the status circa 2001, of the HITRAN compilation that comprises the public edition available through 2001. The HITRAN compilation consists of several components useful for radiative transfer calculation codes: high-resolution spectroscopic parameters of molecules in the gas phase, absorption cross-sections for molecules with very dense spectral features, aerosol refractive indices, ultraviolet line-by-line parameters and absorption cross-sections, and associated database management software. The line-by-line portion of the database contains spectroscopic parameters for 38 molecules and their isotopologues and isotopomers suitable for calculating atmospheric transmission and radiance properties. Many more molecular species are presented in the infrared cross-section data than in the previous edition, especially the chlorofluorocarbons and their replacement gases. There is now sufficient representation so that quasi-quantitative simulations can be obtained with the standard radiance codes. In addition to the description and justification of new or modified data that have been incorporated since the last edition of HITRAN (1996), future modifications are indicated for cases considered to have a significant impact on remote-sensing experiments. (C) 2003 Elsevier Ltd. All rights reserved.

1,231 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the NO2 absorption cross-section from 42 000 to 10 000 cm−1 (238-1000 nm) with a Fourier transform spectrometer (at the resolution of 2 cm− 1, 0.01 nm at 240 nm to 0.2 nm at 1000 nm).
Abstract: The NO2 absorption cross-section has been measured from 42 000 to 10 000 cm−1 (238–1000 nm) with a Fourier transform spectrometer (at the resolution of 2 cm−1, 0.01 nm at 240 nm to 0.2 nm at 1000 nm) and a 5 m temperature controlled multiple reflection cell. The uncertainty on the cross-section is estimated to be less than 3% below 40 000 cm−1 (λ > 250 nm) at 294 K, 3% below 30 000 cm−1 (λ > 333 nm) at 220 K, but reaches 10% for higher wavenumbers. Temperature and pressure effects have been observed. Comparison with data from the literature generally shows a good agreement for wavenumbers between 37 500 and 20 000 cm−1 (267–500 nm). Outside these limits, the difference can reach several percent.

684 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the scanning imaging absorption spectrometer for atmospheric chartography (SCIAMACHY) pre-flight model satellite spectrometers to measure the gas-phase absorption spectra of the most important atmospheric trace gases (O3, NO2, SO2, O2, H2O, CO, CO2, CH4, and N2O) in the 230-2380 nm range at medium spectral resolution and at several temperatures between 203 and 293
Abstract: Using the scanning imaging absorption spectrometer for atmospheric chartography (SCIAMACHY) pre-flight model satellite spectrometer, gas-phase absorption spectra of the most important atmospheric trace gases (O3, NO2, SO2, O2, OClO, H2CO, H2O, CO, CO2, CH4, and N2O) have been measured in the 230–2380 nm range at medium spectral resolution and at several temperatures between 203 and 293 K. The spectra show high signal-to-noise ratio (between 200 up to a few thousands), high baseline stability (better than 10−2) and an accurate wavelength calibration (better than 0.01 nm) and were scaled to absolute absorption cross-sections using previously published data. The results are important as reference data for atmospheric remote-sensing and physical chemistry. Amongst other results, the first measurements of the Wulf bands of O3 up to their origin above 1000 nm were made at five different temperatures between 203 and 293 K, the first UV-Vis absorption cross-sections of NO2 in gas-phase equilibrium at 203 K were recorded, and the ultraviolet absorption cross-sections of SO2 were measured at five different temperatures between 203 and 296 K. In addition, the molecular absorption spectra were used to improve the wavelength calibration of the SCIAMACHY spectrometer and to characterize the instrumental line shape (ILS) and straylight properties of the instrument. It is demonstrated that laboratory measurements of molecular trace gas absorption spectra prior to launch are important for satellite instrument characterization and to validate and improve the spectroscopic database.

630 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented an estimation of the total retrieval uncertainty for vertical tropospheric NO2 columns based on theoretical error source discussions combined with actual Global Ozone Monitoring Experiment (GOME) observations.
Abstract: [1] Retrieval uncertainty estimates for vertical tropospheric NO2 columns based on theoretical error source discussions combined with actual Global Ozone Monitoring Experiment (GOME) observations are presented. Contributions to the total retrieval uncertainty are divided into three categories: (1) errors caused by measurement noise and spectral fitting, affecting the slant column density, (2) errors related to the separation of stratospheric and tropospheric NO2 affecting the estimate of the stratospheric slant column, and (3) errors due to uncertainty in model parameters such as clouds, surface albedo, and a priori profile shape, affecting the tropospheric air mass factor. Furthermore, it is shown that a correction for the effective temperature of the trace gas is essential and that a correction for the presence of aerosols needs to be accompanied by aerosol corrections to the cloud retrieval. A discussion of the error components and total retrieval uncertainty is given for March 1997. Tropospheric NO2 columns can be retrieved with a precision of 35–60% over regions with a large contribution of the troposphere to the total column. This error estimate demonstrates the need for highly accurate albedo maps, cloud retrieval schemes, and realistic a priori NO2 profile shapes.

625 citations