scispace - formally typeset
Search or ask a question
Author

M. G. D. Gilchriese

Bio: M. G. D. Gilchriese is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Large Hadron Collider & Higgs boson. The author has an hindex of 88, co-authored 389 publications receiving 29494 citations. Previous affiliations of M. G. D. Gilchriese include Istanbul Technical University & West University of Timișoara.


Papers
More filters
Journal ArticleDOI
D. S. Akerib1, S. Alsum2, Henrique Araujo3, X. Bai4, A. J. Bailey3, J. Balajthy5, P. Beltrame, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, R. Bramante1, P. Brás8, D. Byram9, Sidney Cahn10, M. C. Carmona-Benitez11, C. Chan12, A.A. Chiller9, C. Chiller9, A. Currie3, J. E. Cutter13, T. J. R. Davison, A. Dobi14, J. E. Y. Dobson15, E. Druszkiewicz16, B. N. Edwards10, C. H. Faham14, S. Fiorucci12, R. J. Gaitskell12, V. M. Gehman14, C. Ghag15, K.R. Gibson1, M. G. D. Gilchriese14, C. R. Hall5, M. Hanhardt4, S. J. Haselschwardt11, S. A. Hertel6, D. P. Hogan6, M. Horn6, D. Q. Huang12, C. M. Ignarra17, M. Ihm6, R.G. Jacobsen6, W. Ji1, K. Kamdin6, K. Kazkaz7, D. Khaitan16, R. Knoche5, N.A. Larsen10, C. Lee1, B. G. Lenardo7, K. T. Lesko14, A. Lindote8, M.I. Lopes8, A. Manalaysay13, R. L. Mannino18, M. F. Marzioni, Daniel McKinsey6, D. M. Mei9, J. Mock19, M. Moongweluwan16, J. A. Morad13, A. St. J. Murphy20, C. Nehrkorn11, H. N. Nelson11, F. Neves8, K. O’Sullivan6, K. C. Oliver-Mallory6, K. J. Palladino17, E. K. Pease6, P. Phelps1, L. Reichhart15, C. Rhyne12, S. Shaw15, T. A. Shutt1, C. Silva8, M. Solmaz11, V. N. Solovov8, P. Sorensen14, S. Stephenson13, T. J. Sumner3, Matthew Szydagis19, D. J. Taylor, W. C. Taylor12, B. P. Tennyson10, P. A. Terman18, D. R. Tiedt4, W. H. To1, Mani Tripathi13, L. Tvrznikova6, S. Uvarov13, J.R. Verbus12, R. C. Webb18, J. T. White18, T. J. Whitis1, M. S. Witherell14, F.L.H. Wolfs16, Jilei Xu7, K. Yazdani3, Sarah Young19, Chao Zhang9 
TL;DR: This search yields no evidence of WIMP nuclear recoils and constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon experiment are reported.
Abstract: We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV c^{-2}, WIMP-nucleon spin-independent cross sections above 2.2×10^{-46} cm^{2} are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10^{-46} cm^{2} at 50 GeV c^{-2}.

1,844 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Posted Content
TL;DR: In this article, a detailed study of the expected performance of the ATLAS detector is presented, together with the reconstruction of tracks, leptons, photons, missing energy and jets, along with the performance of b-tagging and the trigger.
Abstract: A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.

1,160 citations

ReportDOI
18 Jun 1999

1,107 citations

Journal ArticleDOI
Georges Aad1, M. Ackers2, F. Alberti, M. Aleppo3  +264 moreInstitutions (18)
TL;DR: In this article, the silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized and detailed descriptions of the pixel detector electronics and the silicon sensors are given.
Abstract: The silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized. Detailed descriptions of the pixel detector electronics and the silicon sensors are given. The design, fabrication, assembly and performance of the pixel detector modules are presented. Data obtained from test beams as well as studies using cosmic rays are also discussed.

709 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations

Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations

Journal ArticleDOI
TL;DR: Delphes as mentioned in this paper is a fast-simulation of a multipurpose detector for phenomenological studies, including a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system.
Abstract: The version 3.0 of the Delphes fast-simulation is presented. The goal of Delphes is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The Delphes framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of Delphes are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.

2,692 citations