scispace - formally typeset
Search or ask a question
Author

M.G. Young

Bio: M.G. Young is an academic researcher from Bell Labs. The author has contributed to research in topics: Laser & Optical amplifier. The author has an hindex of 26, co-authored 112 publications receiving 2414 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the use of ultrathin etch-stop techniques to expand the vertical optical mode size adiabatically in 1.5-mu m InGaAs/InGaAsP MQW lasers using a tapered-core passive intracavity waveguide structure is discussed.
Abstract: The use of ultrathin etch-stop techniques to expand the vertical optical mode size adiabatically in 1.5- mu m InGaAs/InGaAsP MQW lasers using a tapered-core passive intracavity waveguide structure is discussed. 30% differential quantum efficiency out the tapered facet, far-field FWHM of approximately 12 degrees and a butt-coupling efficiency into a cleaved fiber of -4.2 dB, with -1-dB alignment tolerances of approximately +or-3 mu m, were achieved. >

206 citations

Journal ArticleDOI
TL;DR: In this paper, the integrated operation of a 16*1 WDM source with distributed Bragg reflector (DBR) lasers and electroabsorption modulators has been demonstrated by using repeated holographic exposures and wet chemical etching, 16 different wavelengths from 1.544 to 1.553 mu m with an average channel spacing of 6 AA.
Abstract: The integrated operation of a 16*1 wavelength-division-multiplexed (WDM) source with distributed Bragg reflector (DBR) lasers and electroabsorption modulators has been demonstrated. By using repeated holographic exposures and wet chemical etching, 16 different wavelengths from 1.544 to 1.553 mu m with an average channel spacing of 6 AA are obtained. A high-performance combiner is used to obtain a very uniform coupling into the single-output waveguide, and with the integration of an optical amplifier an average optical power of -8 dBm per channel is coupled into a single-mode fiber. >

133 citations

Journal ArticleDOI
TL;DR: In this paper, the authors observed saturation in the electroabsorption of InGaAs/InP multiple quantum wells (MQWs) at high optical intensity, and they found that saturation occurs due to the presence of trapped photogenerated holes that screen the MQWs from the applied electric field.
Abstract: We observe saturation in the electroabsorption of InGaAs/InP multiple quantum wells (MQWs) at high optical intensity. Contrary to the mechanism for zero‐field MQWs, we find that saturation occurs due to the presence of trapped photogenerated holes that screen the MQWs from the applied electric field. By carefully measuring the absorption coefficient of the wells and the emission time for holes, we are able to fit the observed electroabsorption saturation with no adjustable parameters.

126 citations

Journal ArticleDOI
TL;DR: In this paper, a strain compensated multiple quantum well (MQW) structure was constructed by introducing opposite strain into the barrier layers, which showed significant improvement in the photoluminescence spectra.
Abstract: Strain‐compensated strained‐layer multiple quantum well structures have been grown by introducing opposite strain into the barrier layers. Such structures show significant improvement in the photoluminescence spectra, i.e., narrower full width half maxima and stronger intensities. Lasers fabricated with such structures have exhibited low current thresholds (12 mA), high quantum efficiencies (28% per facet), which are constant over a wide current range.

111 citations

Journal ArticleDOI
TL;DR: In this article, a multiquantum-well optical amplifier for 1.5-mu m wavelength operation using alternating tensile and compressively strained wells in the active region is described.
Abstract: A multiquantum-well optical amplifier for 1.5- mu m wavelength operation using alternating tensile and compressively strained wells in the active region is described. For each bias level measured, the polarization sensitivity of the amplifier gain is 1 dB or less averaged over the gain bandwidth. This amplifier is suitable for integration with other optical devices in photonic integrated circuits which require polarization-independent gain. >

108 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces.
Abstract: Nanomaterials, such as metal or semiconductor nanoparticles and nanorods, exhibit similar dimensions to those of biomolecules, such as proteins (enzymes, antigens, antibodies) or DNA. The integration of nanoparticles, which exhibit unique electronic, photonic, and catalytic properties, with biomaterials, which display unique recognition, catalytic, and inhibition properties, yields novel hybrid nanobiomaterials of synergetic properties and functions. This review describes recent advances in the synthesis of biomolecule-nanoparticle/nanorod hybrid systems and the application of such assemblies in the generation of 2D and 3D ordered structures in solutions and on surfaces. Particular emphasis is directed to the use of biomolecule-nanoparticle (metallic or semiconductive) assemblies for bioanalytical applications and for the fabrication of bioelectronic devices.

2,334 citations

Journal ArticleDOI
TL;DR: A detailed description of phased-array operation and design is presented and an overview of the most important applications is given.
Abstract: Wavelength multiplexers, demultiplexers and routers based on optical phased arrays play a key role in multiwavelength telecommunication links and networks. In this paper, a detailed description of phased-array operation and design is presented and an overview is given of the most important applications.

962 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of various wavelength conversion techniques, discusses the advantages and shortcomings of each technique, and addresses their implications for transparent WDM networks, and discuss their potential advantages over the optoelectronic counterpart.
Abstract: WDM networks make a very effective utilization of the fiber bandwidth and offer flexible interconnections based on wavelength routing. In high capacity, dynamic WDM networks, blocking due to wavelength contention can he reduced by wavelength conversion. Wavelength conversion addresses a number of key issues in WDM networks including transparency, interoperability, and network capacity. Strictly transparent networks offer seamless interconnections with full reconfigurability and interoperability. Wavelength conversion may be the first obstacle in realizing a transparent WDM network. Among numerous wavelength conversion techniques reported to date, only a few techniques offer strict transparency. Optoelectronic conversion (O/E-E/O) techniques achieve limited transparency, yet their mature technologies allow deployment in the near future. The majority of all-optical wavelength conversion techniques also offer limited transparency but they have a potential advantage over the optoelectronic counterpart in realizing lower packaging costs and crosstalk when multiple wavelength array configurations are considered. Wavelength conversion by difference-frequency generation offers a full range of transparency while adding no excess noise to the signal. Recent experiments showed promising results including a spectral inversion and a 90 nm conversion bandwidth. This paper reviews various wavelength conversion techniques, discusses the advantages and shortcomings of each technique, and addresses their implications for transparent networks.

928 citations

Journal ArticleDOI
05 Jun 2006
TL;DR: This paper discusses the generation and detection of multigigabit/s intensity- and phase-modulated formats, and highlights their resilience to key impairments found in optical networking, such as optical amplifier noise, multipath interference, chromatic dispersion, polarization-mode dispersion.
Abstract: Fiber-optic communication systems form the high-capacity transport infrastructure that enables global broadband data services and advanced Internet applications. The desire for higher per-fiber transport capacities and, at the same time, the drive for lower costs per end-to-end transmitted information bit has led to optically routed networks with high spectral efficiencies. Among other enabling technologies, advanced optical modulation formats have become key to the design of modern wavelength division multiplexed (WDM) fiber systems. In this paper, we review optical modulation formats in the broader context of optically routed WDM networks. We discuss the generation and detection of multigigabit/s intensity- and phase-modulated formats, and highlight their resilience to key impairments found in optical networking, such as optical amplifier noise, multipath interference, chromatic dispersion, polarization-mode dispersion, WDM crosstalk, concatenated optical filtering, and fiber nonlinearity

772 citations