scispace - formally typeset
Search or ask a question
Author

M. Ganapathi

Bio: M. Ganapathi is an academic researcher from VIT University. The author has contributed to research in topics: Finite element method & Rotary inertia. The author has an hindex of 33, co-authored 102 publications receiving 3142 citations. Previous affiliations of M. Ganapathi include Indian Institute of Technology Madras & Indian Institute of Technology Delhi.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on the problem of parametrically excited doubly curved sandwich shells with carbon nanotubes reinforced composite (CNTRC) facesheets subjected to in-plane periodic load.
Abstract: This paper focuses on the problem of parametrically excited doubly curved sandwich shells with carbon nanotubes reinforced composite (CNTRC) facesheets subjected to in-plane periodic load. The panels consist of cylindrical and spherical shells modeled using QUAD-8 element which was developed using higher-order shear flexible theory. The formulation considers the secondary effects such as the influence of in-plane and rotary inertia terms, and the aerodynamic pressure when the panel is exposed to air flow. The governing equations developed are solved based on eigenvalue approach. The limits of the principal instability zone predicted here are graphically represented using excitation frequencies against the load amplitudes. The results of this study are tested against the available solutions in the literature. A detailed study considering various design parameters including structural theories on the dynamic instability boundaries and its associated origin of instability regions is conducted. These paramete...

8 citations

Journal ArticleDOI
TL;DR: In this paper, the dynamic behavior of functionally graded spherical caps under suddenly applied loads is studied by using a three-noded axisymmetric curved shell element based on field consistency approach.
Abstract: The dynamic behavior of functionally graded spherical caps under suddenly applied loads is studied by using a three-noded axisymmetric curved shell element based on field consistency approach. The formulation is based on first-order shear deformation theory, and it includes the in-plane and rotary inertia effects. Geometric nonlin- earity is introduced in the formulation using von Karman's strain-displacement relations. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. The effective material properties are evaluated using homogenization method. The governing equations obtained are solved employing the Newmark's integration technique coupled with a modified Newton-Raphson iteration scheme. The load corresponding to a sudden jump in the maximum average displace- ment in the time history of the shell structure is taken as the dynamic buckling pressure. The present model is validated against the available isotropic cases. A detailed numerical study is carried out to bring out the effects of shell geometries, power-law index of functional graded material, boundary conditions, and finite pressure pulse with different duration on the axisymmetric dynamic buckling load of shallow spherical shells.

6 citations

Journal ArticleDOI
TL;DR: In this article, a new C1 finite element for analyzing bending and torsional behavior of rectangular piezoelectric laminated/sandwich composite beams was developed, which includes transverse shear, warping due to torsion, and elastic-electric coupling effects.
Abstract: This work deals with the development of a new C1 finite element for analysing the bending and torsional behaviour of rectangular piezoelectric laminated/sandwich composite beams. The formulation includes transverse shear, warping due to torsion, and elastic–electric coupling effects. It also accounts for the inter-layer continuity condition at the interfaces between layers, and the boundary conditions at the upper and lower surfaces of the beam. The shear strain is represented by a cosine function of a higher order in nature and thus avoiding shear correction factors. The warping function obtained from a three-dimensional elasticity solution is incorporated in the present model. An exact integration is employed in evaluating various energy terms due to the application of field consistency approach while interpolating the transverse shear and torsional strains. The variation of the electric potential through the thickness is taken care of in the formulation based on the observation of three-dimensional solution. The performance of the laminated piezoelectric element is tested comparing with analytical results as well as with the reference solutions evaluated using three-dimensional finite element procedure. A detailed study is conducted to highlight the influence of length-to-thickness ratio on the displacements, stresses and electric potential field of piezoelectric laminated beam structures subjected to flexural and torsional loadings. Copyright © 2004 John Wiley & Sons, Ltd.

6 citations

Journal ArticleDOI
TL;DR: In this article, the nonlinear flexural free vibration characteristics of size dependent curved isotropic nano/microbeams are studied using the nonlocal elasticity theory along with the sinus.
Abstract: In this investigation, the nonlinear flexural free vibration characteristics of size dependent curved isotropic nano/microbeams are studied using the nonlocal elasticity theory along with the sinus...

5 citations

Journal ArticleDOI
TL;DR: In this paper, an attempt is made through non-linear dynamic analysis, to study the influence of amplitude of vibrations on the damping behavior of reinforced composite laminates using the finite elements developed recently based on shear deformation theory.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Diverse areas relevant to various aspects of theory and applications of FGM include homogenization of particulate FGM, heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture.
Abstract: This paper presents a review of the principal developments in functionally graded materials (FGMs) with an emphasis on the recent work published since 2000. Diverse areas relevant to various aspects of theory and applications of FGM are reflected in this paper. They include homogenization of particulate FGM, heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture. The critical areas where further research is needed for a successful implementation of FGM in design are outlined in the conclusions. DOI: 10.1115/1.2777164

1,008 citations

Book
19 May 2005
TL;DR: In this article, the authors present a detailed review of liquid sloshing dynamics in rigid containers, including linear forced and non-linear interaction under external and parametric excitations.
Abstract: Preface Introduction 1. Fluid field equations and modal analysis in rigid containers 2. Linear forced sloshing 3. Viscous damping and sloshing suppression devices 4. Weakly nonlinear lateral sloshing 5. Equivalent mechanical models 6. Parametric sloshing (Faraday's waves) 7. Dynamics of liquid sloshing impact 8. Linear interaction of liquid sloshing with elastic containers 9. Nonlinear interaction under external and parametric excitations 10. Interactions with support structures and tuned sloshing absorbers 11. Dynamics of rotating fluids 12. Microgravity sloshing dynamics Bibliography Index.

920 citations

Book
01 Aug 2014
TL;DR: In this article, a comparison of different shell theories for nonlinear vibrations and stability of circular cylindrical shells is presented. But the authors do not consider the effect of boundary conditions on the large-amplitude vibrations of circular cylinders.
Abstract: Introduction. 1. Nonlinear theories of elasticity of plates and shells 2. Nonlinear theories of doubly curved shells for conventional and advanced materials 3. Introduction to nonlinear dynamics 4. Vibrations of rectangular plates 5. Vibrations of empty and fluid-filled circular cylindrical 6. Reduced order models: proper orthogonal decomposition and nonlinear normal modes 7. Comparison of different shell theories for nonlinear vibrations and stability of circular cylindrical shells 8. Effect of boundary conditions on a large-amplitude vibrations of circular cylindrical shells 9. Vibrations of circular cylindrical panels with different boundary conditions 10. Nonlinear vibrations and stability of doubly-curved shallow-shells: isotropic and laminated materials 11. Meshless discretization of plates and shells of complex shapes by using the R-functions 12. Vibrations of circular plates and rotating disks 13. Nonlinear stability of circular cylindrical shells under static and dynamic axial loads 14. Nonlinear stability and vibrations of circular shells conveying flow 15. Nonlinear supersonic flutter of circular cylindrical shells with imperfections.

862 citations

Journal ArticleDOI
TL;DR: In this article, an overview of available theories and finite elements that have been developed for multilayered, anisotropic, composite plate and shell structures is presented. But, although a comprehensive description of several techniques and approaches is given, most of this paper has been devoted to the so called axiomatic theories and related finite element implementations.
Abstract: This work is an overview of available theories and finite elements that have been developed for multilayered, anisotropic, composite plate and shell structures. Although a comprehensive description of several techniques and approaches is given, most of this paper has been devoted to the so called axiomatic theories and related finite element implementations. Most of the theories and finite elements that have been proposed over the last thirty years are in fact based on these types of approaches. The paper has been divided into three parts. Part I, has been devoted to the description of possible approaches to plate and shell structures: 3D approaches, continuum based methods, axiomatic and asymptotic two-dimensional theories, classical and mixed formulations, equivalent single layer and layer wise variable descriptions are considered (the number of the unknown variables is considered to be independent of the number of the constitutive layers in the equivalent single layer case). Complicating effects that have been introduced by anisotropic behavior and layered constructions, such as high transverse deformability, zig-zag effects and interlaminar continuity, have been discussed and summarized by the acronimC -Requirements. Two-dimensional theories have been dealt with in Part II. Contributions based on axiomatic, asymtotic and continuum based approaches have been overviewed. Classical theories and their refinements are first considered. Both case of equivalent single-layer and layer-wise variables descriptions are discussed. The so-called zig-zag theories are then discussed. A complete and detailed overview has been conducted for this type of theory which relies on an approach that is entirely originated and devoted to layered constructions. Formulas and contributions related to the three possible zig-zag approaches, i.e. Lekhnitskii-Ren, Ambartsumian-Whitney-Rath-Das, Reissner-Murakami-Carrera ones have been presented and overviewed, taking into account the findings of a recent historical note provided by the author. Finite Element FE implementations are examined in Part III. The possible developments of finite elements for layered plates and shells are first outlined. FEs based on the theories considered in Part II are discussed along with those approaches which consist of a specific application of finite element techniques, such as hybrid methods and so-called global/local techniques. The extension of finite elements that were originally developed for isotropic one layered structures to multilayerd plates and shells are first discussed. Works based on classical and refined theories as well as on equivalent single layer and layer-wise descriptions have been overviewed. Development of available zig-zag finite elements has been considered for the three cases of zig-zag theories. Finite elements based on other approches are also discussed. Among these, FEs based on asymtotic theories, degenerate continuum approaches, stress resultant methods, asymtotic methods, hierarchy-p,_-s global/local techniques as well as mixed and hybrid formulations have been overviewed.

839 citations

Journal ArticleDOI
TL;DR: A review of the reported studies in the area of thermo-elastic and vibration analyses of functionally graded (FG) plates with an emphasis on the recent works published since 1998 is presented in this paper.

695 citations