scispace - formally typeset
Search or ask a question
Author

M. Ganapathi

Bio: M. Ganapathi is an academic researcher from VIT University. The author has contributed to research in topics: Finite element method & Rotary inertia. The author has an hindex of 33, co-authored 102 publications receiving 3142 citations. Previous affiliations of M. Ganapathi include Indian Institute of Technology Madras & Indian Institute of Technology Delhi.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the linear free flexural vibrations of functionally graded material plates with a through center crack were studied using an 8-noded shear flexible element, where the material properties were assumed to be temperature dependent and graded in the thickness direction.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the system parameters effects on supersonic panel flutter behavior of laminated composite skew plates were investigated using a shear deformable finite element approach, and the first-order high Mach number approximation to linear potential flow theory was employed for evaluating the aerodynamic pressure.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the large amplitude free flexural vibration behaviors of thin laminated composite skew plates are investigated using finite element approach, which includes the effects of shear deformation, in-plane and rotary inertia.
Abstract: Here, the large amplitude free flexural vibration behaviors of thin laminated composite skew plates are investigated using finite element approach. The formulation includes the effects of shear deformation, in-plane and rotary inertia. The geometric non-linearity based on von Karman's assumptions is introduced. The non-linear governing equations obtained employing Lagrange's equations of motion are solved using the direct iteration technique. The variation of non-linear frequency ratios with amplitudes is brought out considering different parameters such as skew angle, number of layers, fiber orientation, boundary condition and aspect ratio. The influence of higher vibration modes on the non-linear dynamic behavior of laminated skew plates is also highlighted. The present study reveals the redistribution of vibrating mode shape at certain amplitude of vibration depending on geometric and lamination parameters of the plate. Also, the degree of hardening behavior increases with the skew angle and its rate of change depends on the level of amplitude of vibration.

58 citations

Journal ArticleDOI
TL;DR: In this article, the critical buckling of simply supported functionally graded skew plate subjected to mechanical compressive loads is evaluated using first-order shear deformation theory in conjunction with the finite element approach.
Abstract: In this technical note, the critical buckling of simply supported functionally graded skew plate subjected to mechanical compressive loads is evaluated using first-order shear deformation theory in conjunction with the finite element approach. The material properties are assumed to vary in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents. The effective material properties are estimated from the volume fractions and the properties of the constituents using the Mori–Tanaka homogenization method. The effects of aspect ratio, material gradient index, and skew angle on the critical buckling loads of functionally graded material plates are highlighted.

58 citations

Journal ArticleDOI
TL;DR: In this article, the dynamic instability characteristics of sandwich panels with carbon nanotube (CNT) reinforced facesheets subjected to in-plane periodic load is investigated using a shear flexible QUAD-8 serendipity element.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Diverse areas relevant to various aspects of theory and applications of FGM include homogenization of particulate FGM, heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture.
Abstract: This paper presents a review of the principal developments in functionally graded materials (FGMs) with an emphasis on the recent work published since 2000. Diverse areas relevant to various aspects of theory and applications of FGM are reflected in this paper. They include homogenization of particulate FGM, heat transfer issues, stress, stability and dynamic analyses, testing, manufacturing and design, applications, and fracture. The critical areas where further research is needed for a successful implementation of FGM in design are outlined in the conclusions. DOI: 10.1115/1.2777164

1,008 citations

Book
19 May 2005
TL;DR: In this article, the authors present a detailed review of liquid sloshing dynamics in rigid containers, including linear forced and non-linear interaction under external and parametric excitations.
Abstract: Preface Introduction 1. Fluid field equations and modal analysis in rigid containers 2. Linear forced sloshing 3. Viscous damping and sloshing suppression devices 4. Weakly nonlinear lateral sloshing 5. Equivalent mechanical models 6. Parametric sloshing (Faraday's waves) 7. Dynamics of liquid sloshing impact 8. Linear interaction of liquid sloshing with elastic containers 9. Nonlinear interaction under external and parametric excitations 10. Interactions with support structures and tuned sloshing absorbers 11. Dynamics of rotating fluids 12. Microgravity sloshing dynamics Bibliography Index.

920 citations

Book
01 Aug 2014
TL;DR: In this article, a comparison of different shell theories for nonlinear vibrations and stability of circular cylindrical shells is presented. But the authors do not consider the effect of boundary conditions on the large-amplitude vibrations of circular cylinders.
Abstract: Introduction. 1. Nonlinear theories of elasticity of plates and shells 2. Nonlinear theories of doubly curved shells for conventional and advanced materials 3. Introduction to nonlinear dynamics 4. Vibrations of rectangular plates 5. Vibrations of empty and fluid-filled circular cylindrical 6. Reduced order models: proper orthogonal decomposition and nonlinear normal modes 7. Comparison of different shell theories for nonlinear vibrations and stability of circular cylindrical shells 8. Effect of boundary conditions on a large-amplitude vibrations of circular cylindrical shells 9. Vibrations of circular cylindrical panels with different boundary conditions 10. Nonlinear vibrations and stability of doubly-curved shallow-shells: isotropic and laminated materials 11. Meshless discretization of plates and shells of complex shapes by using the R-functions 12. Vibrations of circular plates and rotating disks 13. Nonlinear stability of circular cylindrical shells under static and dynamic axial loads 14. Nonlinear stability and vibrations of circular shells conveying flow 15. Nonlinear supersonic flutter of circular cylindrical shells with imperfections.

862 citations

Journal ArticleDOI
TL;DR: In this article, an overview of available theories and finite elements that have been developed for multilayered, anisotropic, composite plate and shell structures is presented. But, although a comprehensive description of several techniques and approaches is given, most of this paper has been devoted to the so called axiomatic theories and related finite element implementations.
Abstract: This work is an overview of available theories and finite elements that have been developed for multilayered, anisotropic, composite plate and shell structures. Although a comprehensive description of several techniques and approaches is given, most of this paper has been devoted to the so called axiomatic theories and related finite element implementations. Most of the theories and finite elements that have been proposed over the last thirty years are in fact based on these types of approaches. The paper has been divided into three parts. Part I, has been devoted to the description of possible approaches to plate and shell structures: 3D approaches, continuum based methods, axiomatic and asymptotic two-dimensional theories, classical and mixed formulations, equivalent single layer and layer wise variable descriptions are considered (the number of the unknown variables is considered to be independent of the number of the constitutive layers in the equivalent single layer case). Complicating effects that have been introduced by anisotropic behavior and layered constructions, such as high transverse deformability, zig-zag effects and interlaminar continuity, have been discussed and summarized by the acronimC -Requirements. Two-dimensional theories have been dealt with in Part II. Contributions based on axiomatic, asymtotic and continuum based approaches have been overviewed. Classical theories and their refinements are first considered. Both case of equivalent single-layer and layer-wise variables descriptions are discussed. The so-called zig-zag theories are then discussed. A complete and detailed overview has been conducted for this type of theory which relies on an approach that is entirely originated and devoted to layered constructions. Formulas and contributions related to the three possible zig-zag approaches, i.e. Lekhnitskii-Ren, Ambartsumian-Whitney-Rath-Das, Reissner-Murakami-Carrera ones have been presented and overviewed, taking into account the findings of a recent historical note provided by the author. Finite Element FE implementations are examined in Part III. The possible developments of finite elements for layered plates and shells are first outlined. FEs based on the theories considered in Part II are discussed along with those approaches which consist of a specific application of finite element techniques, such as hybrid methods and so-called global/local techniques. The extension of finite elements that were originally developed for isotropic one layered structures to multilayerd plates and shells are first discussed. Works based on classical and refined theories as well as on equivalent single layer and layer-wise descriptions have been overviewed. Development of available zig-zag finite elements has been considered for the three cases of zig-zag theories. Finite elements based on other approches are also discussed. Among these, FEs based on asymtotic theories, degenerate continuum approaches, stress resultant methods, asymtotic methods, hierarchy-p,_-s global/local techniques as well as mixed and hybrid formulations have been overviewed.

839 citations

Journal ArticleDOI
TL;DR: A review of the reported studies in the area of thermo-elastic and vibration analyses of functionally graded (FG) plates with an emphasis on the recent works published since 1998 is presented in this paper.

695 citations