scispace - formally typeset
Search or ask a question
Author

M. Genut

Bio: M. Genut is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Tungsten & Crystallite. The author has an hindex of 6, co-authored 7 publications receiving 2038 citations.

Papers
More filters
Journal ArticleDOI
01 Dec 1992-Nature
TL;DR: In this article, the formation of equivalent stable structures in the layered semiconductor tungsten disulphide was reported, and the closed nature of the structures was verified by electron diffraction and lattice imaging.
Abstract: FOLLOWING the discovery of C60(ref. 1) and the advent of fullerene chemistry, considerable attention has been directed towards the associated cylindrical2,3 and polyhedral4,5 forms of graphite. To date, however, observations of such closed structures have been limited to the carbon system. Here we report the formation of equivalent stable structures in the layered semiconductor tungsten disulphide. After the heating of thin tungsten films in an atmosphere of hydrogen sulphide, transmission electron microscopy reveals a variety of concentric polyhedral and cylindrical structures (ranging in size from 100 nm) growing from the amorphous tungsten matrix. The closed nature of the structures is verified by electron diffraction and lattice imaging. As with the carbon system, complete closure of the tungsten disulphide layers requires the presence of structural defects (for example, edge dislocations), or the arrangement of atoms in polyhedra other than a planar hexagonal geometry.

1,813 citations

Journal ArticleDOI
01 Apr 2009-NANO
TL;DR: In this paper, the growth mechanism of WS2 nanotubes in the large-scale fluidized-bed reactor is studied in greater detail, and careful parameterization of the conditions within the reactor leads to the synthesis of large amounts (50-100 g/batch) of pure nanotube, which appear as a fluffy powder, and (400-500 g/ batch) of nanotubels/nanoplatelets mixture (50:50), where nanotubs usually coming in bundles.
Abstract: The growth mechanism of WS2 nanotubes in the large-scale fluidized-bed reactor is studied in greater detail. This study and careful parameterization of the conditions within the reactor lead to the synthesis of large amounts (50–100 g/batch) of pure nanotubes, which appear as a fluffy powder, and (400–500 g/batch) of nanotubes/nanoplatelets mixture (50:50), where nanotubes usually coming in bundles. The two products are obtained simultaneously in the same reaction but are collected in different zones of the reactor, in a reproducible fashion. The characterization of the nanotubes, which grow catalyst-free, by a number of analytical techniques is reported. The majority of the nanotubes range from 10 to 50 micron in length and 20–180 nm in diameter. The nanotubes reveal highly crystalline order, suggesting very good mechanical behavior with numerous applications.

129 citations

Journal ArticleDOI
TL;DR: In this article, the growth mechanism of WS2 nanotubes is briefly discussed, and two distinct growth mechanisms can be delineated, leading to somewhat different products: 1) thick (50-150 nm) and very long (20-50 microns and above) Nanotubes consisting of many (>20) layers, and 2) slender (20−25 nm) nanotsubes with 5-10 layers.
Abstract: The growth mechanism of WS2 nanotubes is briefly discussed. Two distinct growth mechanisms can be delineated, leading to somewhat different products: 1) thick (50–150 nm) and very long (20–50 microns and above) nanotubes consisting of many (>20) layers, and 2) slender (20–25 nm) nanotubes with 5–10 layers. The synthesis of large amounts of pure WS2 nanotubes belonging to the first category in the large-scale fluidized-bed reactor is described. Characterization of the nanotubes, which grow catalyst-free by a number of analytical techniques, is reported. The nanotubes reveal highly crystalline order, suggesting very good mechanical behavior and numerous applications, especially in the field of nanocomposites.

61 citations

Journal ArticleDOI
TL;DR: In this article, thin tungsten films were ion beam sputter deposited onto quartz slides and then reacted at temperatures from 500 to 1000°C in an open system under a gas flow consisting of a mixture of H 2 S and forming gas.

54 citations

Journal ArticleDOI
TL;DR: In this paper, it was found that the substrate has a critical role in determining both the reaction onset temperature and the texture, and that the WS 2 crystallites nucleate from an amorphous WS 3 phase.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Abstract: We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality, and are continuous on a macroscopic scale.

10,586 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Abstract: Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.

3,436 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the development of a general approach to rational synthesis of crystalline nanowires of arbitrary composition, and illustrate solutions to these challenges with measurements of the atomic structure and electronic properties of carbon nanotubes.
Abstract: Dimensionality plays a critical role in determining the properties of materials due to, for example, the different ways that electrons interact in three-dimensional, twodimensional (2D), and one-dimensional (1D) structures.1-5 The study of dimensionality has a long history in chemistry and physics, although this has been primarily with the prefix “quasi” added to the description of materials; that is, quasi-1D solids, including square-planar platinum chain and metal trichalcogenide compounds,2,6 and quasi2D layered solids, such as metal dichalcogenides and copper oxide superconductors.3-5,7,8 The anisotropy inherent in quasi-1D and -2D systems is central to the unique properties and phases that these materials exhibit, although the small but finite interactions between 1D chains or 2D layers in bulk materials have made it difficult to address the interesting properties expected for the pure low-dimensional systems. Are pure low-dimensional systems interesting and worth pursuing? We believe that the answer to this question is an unqualified yes from the standpoints of both fundamental science and technology. One needs to look no further than past studies of the 2D electron gas in semiconductor heterostructures, which have produced remarkably rich and often unexpected results,9,10 and electron tunneling through 0D quantum dots, which have led to the concepts of the artificial atom and the creation of single electron transistors.11-15 In these cases, lowdimensional systems were realized by creating discrete 2D and 0D nanostructures. 1D nanostructures, such as nanowires and nanotubes, are expected to be at least as interesting and important as 2D and 0D systems.16,17 1D systems are the smallest dimension structures that can be used for efficient transport of electrons and optical excitations, and are thus expected to be critical to the function and integration of nanoscale devices. However, little is known about the nature of, for example, localization that could preclude transport through 1D systems. In addition, 1D systems should exhibit density of states singularities, can have energetically discrete molecularlike states extending over large linear distances, and may show more exotic phenomena, such as the spin-charge separation predicted for a Luttinger liquid.1,2 There are also many applications where 1D nanostructures could be exploited, including nanoelectronics, superstrong and tough composites, functional nanostructured materials, and novel probe microscopy tips.16-29 To address these fascinating fundamental scientific issues and potential applications requires answers to two questions at the heart of condensed matter chemistry and physics research: (1) How can atoms or other building blocks be rationally assembled into structures with nanometer-sized diameters but much longer lengths? (2) What are the intrinsic properties of these quantum wires and how do these properties depend, for example, on diameter and structure? Below we describe investigations from our laboratory directed toward these two general questions. The organization of this Account is as follows. In section II, we discuss the development of a general approach to the rational synthesis of crystalline nanowires of arbitrary composition. In section III, we outline key challenges to probing the intrinsic properties of 1D systems and illustrate solutions to these challenges with measurements of the atomic structure and electronic properties of carbon nanotubes. Last, we discuss future directions and challenges in section IV.

3,218 citations

Journal ArticleDOI
TL;DR: Optical, microscopic and electrical measurements suggest that the synthetic process leads to the growth of MoS(2) monolayer, and TEM images verify that the synthesized MoS (2) sheets are highly crystalline.
Abstract: Large-area MoS(2) atomic layers are synthesized on SiO(2) substrates by chemical vapor deposition using MoO(3) and S powders as the reactants. Optical, microscopic and electrical measurements suggest that the synthetic process leads to the growth of MoS(2) monolayer. The TEM images verify that the synthesized MoS(2) sheets are highly crystalline.

3,088 citations