scispace - formally typeset
Search or ask a question
Author

M.H. MacGregor

Bio: M.H. MacGregor is an academic researcher from University of Alberta. The author has contributed to research in topics: Network topology & Node (networking). The author has an hindex of 14, co-authored 26 publications receiving 1072 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A method for capacity optimization of path restorable networks which is applicable to both synchronous transfer mode (STM) and asynchronous transfermode (ATM) virtual path (VP)-based restoration and jointly optimizing working path routing and spare capacity placement.
Abstract: The total transmission capacity required by a transport network to satisfy demand and protect it from failures contributes significantly to its cost, especially in long-haul networks. Previously, the spare capacity of a network with a given set of working span sizes has been optimized to facilitate span restoration. Path restorable networks can, however, be even more efficient by defining the restoration problem from an end to end rerouting viewpoint. We provide a method for capacity optimization of path restorable networks which is applicable to both synchronous transfer mode (STM) and asynchronous transfer mode (ATM) virtual path (VP)-based restoration. Lower bounds on spare capacity requirements in span and path restorable networks are first compared, followed by an integer program formulation based on flow constraints which solves the spare and/or working capacity placement problem in either span or path restorable networks. The benefits of path and span restoration, and of jointly optimizing working path routing and spare capacity placement, are then analyzed.

266 citations

Journal ArticleDOI
TL;DR: A comparative study of the effectiveness of KSP versus Max Flow as an alternative rerouting criteria in the context of transport network span restoration, and the hypothesis is made that a generalized "trap" topology is responsible for all KSP-Max Flow capacity differences.
Abstract: In the development of technologies for span failure restoration, a question arises about the restoration rerouting characteristics to be specified. In theory, maximal rerouting capacity is obtained with a maximum flow (Max Flow) criterion. However, rerouting that realizes the k-successively shortest link disjoint paths (KSP) may be faster, easier, and, in distributed implementation, more robust than a distributed counterpart for Max Flow. The issue is, therefore, what the restoration capacity penalty is if KSP is used instead of Max Flow. To explore this tradeoff, the authors present a comparative study of the effectiveness of KSP versus Max Flow as an alternative rerouting criteria in the context of transport network span restoration. The comparison applies to both centrally controlled and distributed restoration systems. Study methods include exhaustive span failure experiments on a range of network models, and parametric and analytical investigations for insight into the factors resulting in KSP versus Max Flow differences. The main finding is that KSP restoration capacity is more than 99.9% of that from Max Flow in typical network models. The hypothesis is made that a generalized "trap" topology is responsible for all KSP-Max Flow capacity differences. The hypothesis is tested experimentally and used to develop analytical bounds which agree well with observed results. These findings and data are relevant to standards makers and equipment developers in specifying and engineering future restorable networks. >

199 citations

Journal ArticleDOI
TL;DR: It is proved that under certain Zipf-like flow-size distributions, hashing alone is not able to balance workload, and a new metric is introduced to quantify the effects of adaptive load balancing on overall forwarding performance.
Abstract: Workload distribution is critical to the performance of network processor based parallel forwarding systems. Scheduling schemes that operate at the packet level, e.g., round-robin, cannot preserve packet-ordering within individual TCP connections. Moreover, these schemes create duplicate information in processor caches and therefore are inefficient in resource utilization. Hashing operates at the flow level and is naturally able to maintain per-connection packet ordering; besides, it does not pollute caches. A pure hash-based system, however, cannot balance processor load in the face of highly skewed flow-size distributions in the Internet; usually, adaptive methods are needed. In this paper, based on measurements of Internet traffic, we examine the sources of load imbalance in hash-based scheduling schemes. We prove that under certain Zipf-like flow-size distributions, hashing alone is not able to balance workload. We introduce a new metric to quantify the effects of adaptive load balancing on overall forwarding performance. To achieve both load balancing and efficient system resource utilization, we propose a scheduling scheme that classifies Internet flows into two categories: the aggressive and the normal, and applies different scheduling policies to the two classes of flows. Compared with most state-of-the-art parallel forwarding schemes, our work exploits flow-level Internet traffic characteristics.

115 citations

Proceedings ArticleDOI
23 Jun 1996
TL;DR: A method for capacity optimization of path restorable networks and the capacity benefits of path over span restoration are provided and the further benefits of jointly optimizing working path routing and spare capacity placement in path Restorable networks are quantified by extending the capacity optimization method presented.
Abstract: The total capacity required by a transport network to satisfy demand and protect it from failures contributes significantly to its cost. Previously the spare capacity of a network with a given set of working span sizes has been optimized to facilitate span restoration. Path restorable networks can, however, be even more efficient by defining the restoration problem from an end to end re-routing viewpoint. We now provide a method for capacity optimization of path restorable networks and quantify the capacity benefits of path over span restoration. The further benefits of jointly optimizing working path routing and spare capacity placement in path restorable networks is also quantified by extending the capacity optimization method presented.

79 citations

Patent
01 Nov 1995
TL;DR: In this paper, the authors propose a method for restoring traffic in a network consisting of plural distinct nodes interconnected by distinct spans, each span having working links and spare links, each node has a digital cross-connect switch for making and breaking connections between adjacent spans forming span pairs at a node.
Abstract: A method for restoring traffic in a network. The network includes plural distinct nodes interconnected by plural distinct spans, each span having working links and spare links. Each node has a digital cross-connect switch for making and breaking connections between adjacent spans forming span pairs at a node. Step 1: For each of at least two possible span failures, (a) find the number of restoration routes available in case of the occurrence of each span failure, (b) determine the resources used by each restoration route, and (c) determine the amount of flow to be restored for each span failure. Step 2: find, in a computer, the amount of flow fp to be restored along each restoration route that minimizes total unrestored flow for all possible span failures identified in step 1. Step 3: form connections at each digital cross-connect switch in the network along each restoration route before occurrence of one of the possible span failures identified in step 1 to permit the amount of flow fp determined in step 2 to be carried by each respective restoration route upon the occurrence of one of the possible span failures identified in step 1.

72 citations


Cited by
More filters
Book
01 Jan 2004
TL;DR: Throughout, the authors focus on the traffic demands encountered in the real world of network design, and their generic approach allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network.
Abstract: In network design, the gap between theory and practice is woefully broad. This book narrows it, comprehensively and critically examining current network design models and methods. You will learn where mathematical modeling and algorithmic optimization have been under-utilized. At the opposite extreme, you will learn where they tend to fail to contribute to the twin goals of network efficiency and cost-savings. Most of all, you will learn precisely how to tailor theoretical models to make them as useful as possible in practice. Throughout, the authors focus on the traffic demands encountered in the real world of network design. Their generic approach, however, allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network. For beginners, this book is an excellent introduction. For seasoned professionals, it provides immediate solutions and a strong foundation for further advances in the use of mathematical modeling for network design. (Less)

1,093 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined different approaches to protect a mesh-based WDM optical network from such failures and proposed distributed protocols for path and link restoration, and formulated a model of protection-switching times for different protection schemes based on a fully distributed control network.
Abstract: In a wavelength-division-multiplexing (WDM) optical network, the failure of network elements (e.g., fiber links and cross connects) may cause the failure of several optical channels, thereby leading to large data losses. This study examines different approaches to protect a mesh-based WDM optical network from such failures. These approaches are based on two survivability paradigms: 1) path protection/restoration and 2) link protection/restoration. The study examines the wavelength capacity requirements, and routing and wavelength assignment of primary and backup paths for path and link protection and proposes distributed protocols for path and link restoration. The study also examines the protection-switching time and the restoration time for each of these schemes, and the susceptibility of these schemes to multiple link failures. The numerical results obtained for a representative network topology with random traffic demands demonstrate that there is a tradeoff between the capacity utilization and the susceptibility to multiple link failures. We find that, on one hand, path protection provides significant capacity savings over link protection, and shared protection provides significant savings over dedicated protection; while on the other hand, path protection is more susceptible to multiple link failures than link protection, and shared protection is more susceptible to multiple link failures than dedicated protection. We formulate a model of protection-switching times for the different protection schemes based on a fully distributed control network. We propose distributed control protocols for path and link restoration. Numerical results obtained by simulating these protocols indicate that, for a representative network topology, path restoration has a better restoration efficiency than link restoration, and link restoration has a faster restoration time compared with path restoration.

913 citations

Proceedings ArticleDOI
21 Mar 1999
TL;DR: This study examines different approaches to protect mesh based WDM optical networks from single-link failures, and formulated integer linear programs to determine the capacity requirements for the above protection schemes for a static traffic demand.
Abstract: This investigation considers optical networks which employ wavelength cross-connects that enable the establishment of wavelength-division-multiplexed (WDM) channels, between node-pairs. In such and other networks, the failure of a network element (e.g., fiber link, cross-connect, etc.) may cause the failure of several optical channels, thereby leading to large data losses. This study examines different approaches to protect mesh based WDM optical networks from single-link failures. These approaches are based on two basic survivability paradigms: (a) path protection/restoration, and (b) link protection/restoration. In path- and link-protection schemes, backup paths and wavelengths are reserved in advance at the time of call setup. Path- and link-restoration schemes are dynamic schemes in which backup paths are discovered (from the spare capacity in the network) upon the occurrence of a failure. In part 1 of this study presented in this paper, we formulated integer linear programs to determine the capacity requirements for the above protection schemes for a static traffic demand.

727 citations

Proceedings ArticleDOI
07 Jun 1998
TL;DR: It is shown that through a strategy of pre-failure cross-connection between the spare links of a mesh network, it is possible to achieve 100% restoration with little, if any, additional spare capacity than in aMesh network.
Abstract: Cycle-oriented preconfiguration of spare capacity is a new idea for the design and operation of mesh-restorable networks. It offers a sought-after goal: to retain the capacity-efficiency of a mesh-restorable network, while approaching the speed of line-switched self-healing rings. We show that through a strategy of pre-failure cross-connection between the spare links of a mesh network, it is possible to achieve 100% restoration with little, if any, additional spare capacity than in a mesh network. In addition, we find that this strategy requires the operation of only two cross-connections per restoration path. Although spares are connected into cycles, the method is different than self-healing rings because each preconfigured cycle contributes to the restoration of more failure scenarios than can a ring. Additionally, two restoration paths may be obtained from each pre-formed cycle, whereas a ring only yields one restoration path for each failure it addresses. We give an optimal design formulation and results for preconfiguration of spare capacity and describe a distributed self-organizing protocol through which a network can continually approximate the optimal preconfiguration state.

594 citations

Journal ArticleDOI
TL;DR: This article takes a look at the techniques used to achieve survivability in traditional optical networks, and how those techniques are evolving to make next-generation WDM networks survivable.
Abstract: Survivability, the ability of a network to withstand and recover from failures, is one of the most important requirements of networks. Its importance is magnified in fiber optic networks with throughputs on the order of gigabits and terabits per second. This article takes a look at the techniques used to achieve survivability in traditional optical networks, and how those techniques are evolving to make next-generation WDM networks survivable.

445 citations