scispace - formally typeset
Search or ask a question
Author

M. H. Steiger

Bio: M. H. Steiger is an academic researcher. The author has contributed to research in topics: Static pressure & Cartesian coordinate system. The author has an hindex of 1, co-authored 2 publications receiving 253 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: Noncircular jets have been identified as an efficient technique of passive flow control that allows significant improvements of performance in various practical systems at a relatively low cost because noncircular jet rely solely on changes in the geometry of the nozzle as discussed by the authors.
Abstract: Noncircular jets have been the topic of extensive research in the last fifteen years. These jets were identified as an efficient technique of passive flow control that allows significant improvements of performance in various practical systems at a relatively low cost because noncircular jets rely solely on changes in the geometry of the nozzle. The applications of noncircular jets discussed in this review include improved large- and small-scale mixing in low- and high-speed flows, and enhanced combustor performance, by improving combustion efficiency, reducing combustion instabilities and undesired emissions. Additional applications include noise suppression, heat transfer, and thrust vector control (TVC). The flow patterns associated with noncircular jets involve mechanisms of vortex evolution and interaction, flow instabilities, and fine-scale turbulence augmentation. Stability theory identified the effects of initial momentum thickness distribution, aspect ratio, and radius of curvature on the initial flow evolution. Experiments revealed complex vortex evolution and interaction related to selfinduction and interaction between azimuthal and axial vortices, which lead to axis switching in the mean flow field. Numerical simulations described the details and clarified mechanisms of vorticity dynamics and effects of heat release and reaction on noncircular jet behavior.

537 citations

Journal ArticleDOI
TL;DR: In this article, a passive technique of increasing entrainment was found by using a small-aspect-ratio elliptic jet, which was several times greater than that of a circular jet or a plane jet.
Abstract: A passive technique of increasing entrainment was found by using a small-aspect-ratio elliptic jet. The entrainment ratio of an elliptic jet was several times greater than that of a circular jet or a plane jet. The self-induction of the asymmetric coherent structure caused azimuthal distortions which were responsible for engulfing large amounts of surrounding fluid into the jet. In an elliptic jet, an interesting feature in the initial stability process is that the thickness of the shear layer varies around the nozzle. The data indicated that instability frequency was scaled with the thinnest initial momentum thickness which was associated with the maximum vorticity. Turbulence properties were also examined and were found to be significantly different in the major- and minor-axis planes.

533 citations

Journal ArticleDOI
TL;DR: Experimental studies of incompressible elliptic jets of different aspect ratios and initial conditions are summarized along with the effects of excitations at selected frequencies and amplitudes in this paper, where the experimental facilities and procedures are described and jet spread and decay are discussed.
Abstract: Experimental studies of incompressible elliptic jets of different aspect ratios and initial conditions are summarized along with the effects of excitations at selected frequencies and amplitudes. The experimental facilities and procedures are described and jet spread and decay are discussed. The instability of elliptic shear layers, the behavior of the jet column under controlled excitation, and the time-average measures of unexcited jets are addressed.

483 citations

Journal ArticleDOI
TL;DR: In this article, les couches limites tridimensionnelles and autres couches de cisaillement ainsi que les ecoulements a tourbillons dans les turbomachines are discussed.
Abstract: Revue des connaissances concernant les couches limites tridimensionnelles et autres couches de cisaillement ainsi que les ecoulements a tourbillons dans les turbomachines

409 citations

Journal ArticleDOI
TL;DR: In this article, a blowdown-type air supply system was used to provide the airflow to a cylindrical settling chamber 1.75 m in length and 0.6 m in diameter.
Abstract: Hot-wire measurements in an incompressible rectangular jet, issuing into a quiet environment at ambient conditions, are presented. A blow-down-type air supply system was used to provide the airflow to a cylindrical settling chamber 1.75 m in length and 0.6 m in diameter. The measurements were made with constant-temperature anemometers in conjunction with linearizers. The two signals from the linearizers were sent through a sum and difference unit which was calibrated from dc to 100 kHz. The distributions of mean velocity and the turbulence shear stresses were measured in the two central planes of the jet stations up to 115 widths downstream of the nozzle exit. Three distinct regions characterized the jet flow field: a potential core origin, a two-dimensional-type region, and an axisymmetric type region. The onset of the second region appeared to be at a location where the shear layers separated by the short dimension of the nozzle meet; and the third region occurred at a downstream location where the two shear layers from the short edges of the nozzle meet. In the central plane, similarity was found both in the mean velocity and shear stress profiles beyond 30 widths downstream of the nozzle exit; profiles of rms velocity showed similarity in the second, but not the third region.

348 citations